52 lines
1.1 KiB
Python
52 lines
1.1 KiB
Python
|
|
#!/usr/bin/env python
|
||
|
|
# -*- coding: utf-8 -*-
|
||
|
|
"""
|
||
|
|
简单测试DashScope流式输出
|
||
|
|
"""
|
||
|
|
|
||
|
|
import os
|
||
|
|
import sys
|
||
|
|
from dotenv import load_dotenv
|
||
|
|
|
||
|
|
# 添加项目路径
|
||
|
|
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
||
|
|
|
||
|
|
# 加载环境变量
|
||
|
|
load_dotenv()
|
||
|
|
|
||
|
|
from retriver.langgraph.dashscope_llm import DashScopeLLM
|
||
|
|
|
||
|
|
def test_stream():
|
||
|
|
"""测试流式输出"""
|
||
|
|
|
||
|
|
# 创建LLM实例
|
||
|
|
llm = DashScopeLLM()
|
||
|
|
|
||
|
|
# 测试prompt
|
||
|
|
prompt = "请用30字简单介绍RAG系统"
|
||
|
|
|
||
|
|
print("开始流式生成...")
|
||
|
|
print("=" * 50)
|
||
|
|
|
||
|
|
# 收集所有token
|
||
|
|
tokens = []
|
||
|
|
full_text = ""
|
||
|
|
|
||
|
|
try:
|
||
|
|
for token in llm.stream(prompt, max_tokens=100, temperature=0.7):
|
||
|
|
# 打印每个token
|
||
|
|
print(f"Token: {repr(token)}")
|
||
|
|
tokens.append(token)
|
||
|
|
full_text += token
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
print(f"错误: {e}")
|
||
|
|
import traceback
|
||
|
|
traceback.print_exc()
|
||
|
|
|
||
|
|
print("=" * 50)
|
||
|
|
print(f"总共 {len(tokens)} 个token")
|
||
|
|
print(f"完整文本({len(full_text)}字): {full_text}")
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
test_stream()
|