first commit
This commit is contained in:
169
retriver/langgraph/es_vector_retriever.py
Normal file
169
retriver/langgraph/es_vector_retriever.py
Normal file
@ -0,0 +1,169 @@
|
||||
"""
|
||||
ES向量检索器
|
||||
用于直接与ES向量库进行向量匹配检索
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Dict, Any, Optional
|
||||
from langchain_core.documents import Document
|
||||
|
||||
# 添加路径
|
||||
project_root = os.path.join(os.path.dirname(__file__), '..', '..')
|
||||
sys.path.append(project_root)
|
||||
|
||||
from retriver.langgraph.dashscope_embedding import DashScopeEmbeddingModel
|
||||
from elasticsearch_vectorization.es_client_wrapper import ESClientWrapper
|
||||
from elasticsearch_vectorization.config import ElasticsearchConfig
|
||||
|
||||
|
||||
class ESVectorRetriever:
|
||||
"""ES向量检索器,用于直接进行向量相似度匹配"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
keyword: str,
|
||||
top_k: int = 3,
|
||||
oneapi_key: Optional[str] = None,
|
||||
oneapi_base_url: Optional[str] = None,
|
||||
embed_model_name: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
初始化ES向量检索器
|
||||
|
||||
Args:
|
||||
keyword: ES索引关键词
|
||||
top_k: 返回的文档数量
|
||||
oneapi_key: OneAPI密钥
|
||||
oneapi_base_url: OneAPI基础URL
|
||||
embed_model_name: 嵌入模型名称
|
||||
"""
|
||||
self.keyword = keyword
|
||||
self.top_k = top_k
|
||||
|
||||
# 初始化嵌入模型
|
||||
self.embedding_model = DashScopeEmbeddingModel(
|
||||
api_key=oneapi_key,
|
||||
model_name=embed_model_name
|
||||
)
|
||||
|
||||
# 初始化ES客户端
|
||||
self.es_client = ESClientWrapper()
|
||||
|
||||
# 设置索引名称
|
||||
self.passages_index = ElasticsearchConfig.get_passages_index_name(keyword)
|
||||
|
||||
print(f"ES向量检索器初始化完成,目标索引: {self.passages_index}")
|
||||
|
||||
def retrieve(self, query: str) -> List[Document]:
|
||||
"""
|
||||
检索相关文档
|
||||
|
||||
Args:
|
||||
query: 查询文本
|
||||
|
||||
Returns:
|
||||
检索到的文档列表
|
||||
"""
|
||||
try:
|
||||
# 生成查询向量
|
||||
query_embedding = self.embedding_model.encode([query], normalize_embeddings=True)[0]
|
||||
|
||||
# 确保向量是列表格式
|
||||
if hasattr(query_embedding, 'tolist'):
|
||||
query_vector = query_embedding.tolist()
|
||||
else:
|
||||
query_vector = list(query_embedding)
|
||||
|
||||
# 执行向量搜索
|
||||
search_result = self.es_client.vector_search(
|
||||
index_name=self.passages_index,
|
||||
vector=query_vector,
|
||||
field="embedding",
|
||||
size=self.top_k
|
||||
)
|
||||
|
||||
# 解析搜索结果
|
||||
documents = []
|
||||
hits = search_result.get("hits", {}).get("hits", [])
|
||||
|
||||
for hit in hits:
|
||||
source = hit["_source"]
|
||||
score = hit["_score"]
|
||||
|
||||
# 创建Document对象
|
||||
doc = Document(
|
||||
page_content=source.get("content", ""),
|
||||
metadata={
|
||||
"passage_id": source.get("passage_id", ""),
|
||||
"file_id": source.get("file_id", ""),
|
||||
"evidence": source.get("evidence", ""),
|
||||
"score": score,
|
||||
"source": "es_vector_search"
|
||||
}
|
||||
)
|
||||
documents.append(doc)
|
||||
|
||||
print(f"ES向量检索完成,找到 {len(documents)} 个相关文档")
|
||||
return documents
|
||||
|
||||
except Exception as e:
|
||||
print(f"ES向量检索失败: {e}")
|
||||
return []
|
||||
|
||||
def test_connection(self) -> bool:
|
||||
"""测试ES连接"""
|
||||
try:
|
||||
return self.es_client.ping()
|
||||
except:
|
||||
return False
|
||||
|
||||
def get_index_stats(self) -> Dict[str, Any]:
|
||||
"""获取索引统计信息"""
|
||||
try:
|
||||
query = {"match_all": {}}
|
||||
result = self.es_client.search(self.passages_index, query, size=0)
|
||||
total = result.get("hits", {}).get("total", 0)
|
||||
|
||||
# 兼容不同ES版本的total格式
|
||||
if isinstance(total, dict):
|
||||
count = total.get("value", 0)
|
||||
else:
|
||||
count = total
|
||||
|
||||
return {
|
||||
"index_name": self.passages_index,
|
||||
"document_count": count,
|
||||
"top_k": self.top_k
|
||||
}
|
||||
except Exception as e:
|
||||
print(f"获取索引统计信息失败: {e}")
|
||||
return {
|
||||
"index_name": self.passages_index,
|
||||
"document_count": 0,
|
||||
"top_k": self.top_k,
|
||||
"error": str(e)
|
||||
}
|
||||
|
||||
|
||||
def create_es_vector_retriever(
|
||||
keyword: str,
|
||||
top_k: int = 3,
|
||||
**kwargs
|
||||
) -> ESVectorRetriever:
|
||||
"""
|
||||
创建ES向量检索器的便捷函数
|
||||
|
||||
Args:
|
||||
keyword: ES索引关键词
|
||||
top_k: 返回的文档数量
|
||||
**kwargs: 其他参数
|
||||
|
||||
Returns:
|
||||
ES向量检索器实例
|
||||
"""
|
||||
return ESVectorRetriever(
|
||||
keyword=keyword,
|
||||
top_k=top_k,
|
||||
**kwargs
|
||||
)
|
||||
Reference in New Issue
Block a user