{ "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "answer": "【检索结果汇总】\n\n查询问题:数据研发运营一体化(DataOps)是数据开发的哪种范式?\n\n检索到 48 个相关段落:\n\n【事件信息】\n\n事件1:将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。\n\n事件2:数据研发运营一体化(DataOps)是数据开发的新范式,将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据产品交付效率与质量,实现高质量数字化发展。\n\n事件3:随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。\n\n事件4:DataOps 实践快速发展\n\n事件5:加强数据生态系统的建设,鼓励实现数据开放共享。\n\n事件6:随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。\n\n事件7:“数据二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。\n\n事件8:编写了一篇关于DataOps实践指南的文章\n\n事件9:实施数据治理策略\n\n事件10:提高开发效率和产品质量\n\n事件11:建立数据管道\n\n事件12:集成DevOps实践\n\n事件13:定位:总结各行业最佳实践,提炼核心理论框架,推动 DataOps 理念的广泛应用,加速数据驱动型企业的能力建设\n\n事件14:《DataOps 实践指南 2.0》发布\n\n事件15:《DataOps 实践指南 1.0》发布\n\n事件16:充分利用AI和大模型技术优化数据策略。\n\n事件17:“数据二十条”的提出\n\n事件18:健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。\n\n事件19:随着数据要素流通政策的不断完善,要素市场的健康有序发展\n\n事件20:企业开展数据流通服务创造了良好的环境。\n\n事件21:越来越多的企业利用自身数据积累优势和服务能力优势\n\n事件22:形成可流通交易的数据产品,提供针对性的数据产品与解决方案。\n\n事件23:形成可流通交易的数据产品\n\n事件24:完善数据产品全流程合规管理,充分实现数据赋能发展。\n\n事件25:构建集开发、治理、运营于一体的自动化数据流水线\n\n事件26:实现高质量数字化发展。\n\n事件27:充分利用AI和大模型技术\n\n事件28:数据研发管理\n\n事件29:数据研发管理是指以研发治理一体化为目标,构建标准化的数据开发流程。\n\n事件30:构建标准化的数据开发流程\n\n事件31:四个核心环节包括数据研发管理、数据交付管理、数据运维和价值运营。\n\n事件32:DataOps 的数据流水线以数据工程化能力为核心,构建出数据研发管理、数据交付管理、数据运维和价值运营四个环节。\n\n事件33:价值运营\n\n事件34:数据运维\n\n事件35:数据交付管理\n\n事件36:数据开发流水线包括数据的研发管理、交付管理、数据运维和价值运营。\n\n事件37:系统工具\n\n事件38:数据运维是指以全面立体的持续监控、发现、处理数据问题为目标,构建全链路可观测能力。\n\n事件39:能力框架包括四个核心环节\n\n事件40:组织管理是指以打造敏捷、协同的数据驱动型组织为目标,优化组织架构、明晰岗位职能。\n\n事件41:安全管控是指以保证个人隐私、数据安全为目标,将安全管控嵌入到数据流水线中,构建数据研发全生命周期的安全管理能力。\n\n事件42:DataOps 能力模型围绕数据开发流水线,从业务需求出发,以创造业务价值为目标,形成“4+3”的能力框架。\n\n事件43:组织管理\n\n\n\n【段落信息】\n\n段落1:## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化(DataOps)是数据开发的新范式,将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量,实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。\n\n段落2:# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1:盲目跟风,没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2:决策机制模糊,导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3:过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4:追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向\n\n段落3:# DataOps 能力框架——核心环节\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了不断提高数据产品交付效率与质量,实现高质量数字化发展的目标。DataOps 的数据流水线以数据工程化能力为核心,构建出数据研发管理、数据交付管理、数据运维和价值运营四个环节。\\n\\n### 数据研发管理\\n\\n#### 需求管理\\n\\n采集 → 分析 → 确认 → 实施 → 变更\\n\\n数据需求全流程管理\\n\\n#### 设计管理\\n\\n制度 + 技术\\n\\n管理\\n\\n模型设计\\n\\n加工设计\\n\\n标准设计\\n\\n质量设计\\n\\n安全设计\\n\\n#### 数据开发\\n\\n集成存储、实施、部署、维护数据解决方案\\n\\n数据处理、加工、管理、使用\\n\\n提升数据资源价值\\n\\n#### 自助分析\\n\\n自助式的数据二次处理\\n\\n### 数据交付管理\\n\\n#### 配置管理\\n\\n版本控制\\n\\n环境管理\\n\\n代码版本管理\\n\\n数据版本管理\\n\\n保证\\n\\n各阶段数据随时可用性、可验证性\\n\\n#### 测试管理\\n\\n自动化测试流水线\\n\\n管理\\n\\n单元测试\\n\\n集成测试\\n\\n提前发现问题处理问题\\n\\n保证\\n\\n#### 部署与发布管理\\n\\n自动化部署发布流水线\\n\\n聚焦\\n\\n工具的自动化和标准化\\n\\n保证\\n\\n加快数据部署效率降低人为操作风险\\n\\n### 数据运维\\n\\n#### 监控管理\\n\\n监控体系\\n\\n监控预警\\n\\n开发流水线运行情况质量情况\\n\\n#### 资源管理\\n\\n调度优化合理分\\n\\n数据资源\\n\\n计算资源\\n\\n存储资源\\n\\n优化\\n\\n运维成本\\n\\n#### 变更管理\\n\\n标准化、敏捷化的变更流程\\n\\n应对\\n\\n开发流水线各类变更场景\\n\\n#### 异常管理\\n\\n构建\\n\\n异常管理知识库\\n\\n自动化运维能力\\n\\n提升\\n\\n运维效率\\n\\n#### 持续优化\\n\\n调优\\n\\n流水线任务编排\\n\\n平台配置\\n\\n提升\\n\\n开发流水线性能\\n\\n### 价值运营\\n\\n#### 成本管理\\n\\n细化数据产品交付\\n\\n维护成本核算\\n\\n精细控制资源投入\\n\\n识别、减少浪费\\n\\n#### 持续变革\\n\\n打造反馈机制\\n\\n收集各环节堵点问题\\n\\n持续改进\\n\\n#### 量化驱动\\n\\n数据开发流水线\\n\\n评估\\n\\n交付效率\\n\\n需求响应速度\\n\\n优化\\n\\n工作流程资源分配策略\n\n段落4:# DataOps 能力框架——实践保障\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了保证 DataOps 研发流水线能够持续高效运转和迭代完善,企业需要有力的保障措施。本指南提出了组织、工具和安全三个维度的保障要求。这些要求的目标是引导企业以全局最优为目标,保障数据研发流水线的平滑运作。\\n\\n### 系统工具\\n\\n#### 数据需求管理\\n\\n| 手段 | 构建数据需求全生命周期的管理能力 |\\n\\n| :--- | :--------------------------------- |\\n\\n| 目标 | 支持流程的设计和共享 |\\n\\n| 进一步要求 | 数据需求方主动通过自助分析平台进行数据探查 |\\n\\n#### 数据研发治理一体化\\n\\n| 原则 | 先设计、后开发、先标准、后建模 |\\n\\n| :--- | :------------------------------- |\\n\\n| 手段 | 设计管理、开发管理、数据应用 |\\n\\n| 目的 | 规范即设计,设计即开发,开发即治理 |\\n\\n#### 数据自动化交付部署\\n\\n![数据自动化交付部署流程图](image_1.png)\\n\\n#### 数据一体化运维\\n\\n| 对象 | 数据研发全链路的监测、运维监控、运维告警、运维操作 |\\n\\n| :--- | :---------------------------------------------------- |\\n\\n| 手段 | 可视化方式 |\\n\\n| 目的 | 实时展现研发效能、数据质量 |\\n\\n### 组织管理\\n\\n#### 组织架构\\n\\n合理配置\\n\\n{ | 数据技术架构 |\\n\\n| 数据人员架构 |\\n\\n#### 岗位角色\\n\\n| | 设置相应的岗位角色 |\\n\\n| :--- | :------------------ |\\n\\n| | 明确晋升路线与考核方式 |\\n\\n#### 协作协同\\n\\n依托\\n\\n| 敏捷方法 |\\n\\n| :-------- |\\n\\n| 关注团队、工具间的协同问题持续进行优化 |\\n\\n解决\\n\\n### 安全管控\\n\\n#### 安全风险策略\\n\\n加强\\n\\n{ | 数据研发全生命周期 |\\n\\n| 风险识别 |\\n\\n| 风险预测 |\\n\\n#### 风险管理\\n\\n外部法律法规\\n\\n+ 监管要求\\n\\n+ 企业内部安全需求\\n\\n健全\\n\\n风险管理策略\\n\\n#### 安全测试\\n\\n数据研发过程的各环节进行安全测试\\n\\n保证\\n\\n提前发现问题处理问题\n\n段落5:# DataOps 能力框架解读\\n\\n## 2024DataOPS发展大会\\n\\nDataOps 能力模型围绕数据开发流水线,从业务需求出发,以创造业务价值为目标,形成“**4+3**”的能力框架,即 **4 个核心环节**和 **3 项实践保障**。数据开发流水线包括数据的研发管理、交付管理、数据运维和价值运营,保障职能用于支撑流水线顺畅运行,包括系统工具、组织管理和安全管控。\\n\\n### 四个核心环节\\n\\n* **数据研发管理**\\n\\n* 数据研发管理是指以研发治理一体化为目标,构建标准化的数据开发流程。\\n\\n* **数据交付管理**\\n\\n* 数据交付管理是指以提升交付效率和质量为目标,建设持续测试和交付能力。\\n\\n* **数据运维**\\n\\n* 数据运维是指以全面立体的持续监控、发现、处理数据问题为目标,构建全链路可观测能力。\\n\\n* **价值运营**\\n\\n* 价值运营是指以精益运营数据为目标,打造量化驱动变革的能力。\\n\\n### 三项实践保障\\n\\n* **系统工具**\\n\\n* 系统工具是指以企业“**业务用数,研发供数**”的实际流程为基础,构建一体化的技术平台。\\n\\n* **组织管理**\\n\\n* 组织管理是指以打造敏捷、协同的数据驱动型组织为目标,优化组织架构、明晰岗位职能。\\n\\n* **安全管控**\\n\\n* 安全管控是指以保证个人隐私、数据安全为目标,将安全管控嵌入到数据流水线中,构建数据研发全生命周期的安全管理能力。\n\n\n相关子查询:\n数据研发运营一体化是什么?、数据研发运营一体化属于数据开发的哪种范式?\n\n检索统计:\n- 查询复杂度:{'is_complex': True, 'complexity_level': 'complex', 'confidence': 0.95, 'reason': '这是一个复杂查询,因为用户询问的是数据研发运营一体化(DataOps)在数据开发范式中的定位。这个问题可能涉及到对DataOps概念的理解、与传统数据开发方法的对比以及DataOps如何优化数据开发流程等方面的知识。为了回答这个问题,可能需要生成多个子查询来探讨DataOps的核心原则、实践案例和其在不同行业中的应用,以及与传统数据开发方法的区别。'}\n- 是否复杂查询:True\n- 迭代次数:0\n- 信息充分性:True\n", "query_complexity": { "is_complex": true, "complexity_level": "complex", "confidence": 0.95, "reason": "这是一个复杂查询,因为用户询问的是数据研发运营一体化(DataOps)在数据开发范式中的定位。这个问题可能涉及到对DataOps概念的理解、与传统数据开发方法的对比以及DataOps如何优化数据开发流程等方面的知识。为了回答这个问题,可能需要生成多个子查询来探讨DataOps的核心原则、实践案例和其在不同行业中的应用,以及与传统数据开发方法的区别。" }, "is_complex_query": true, "retrieval_path": "complex_hipporag", "iterations": 0, "total_passages": 48, "sub_queries": [ "数据研发运营一体化是什么?", "数据研发运营一体化属于数据开发的哪种范式?" ], "decomposed_sub_queries": [ "数据研发运营一体化是什么?", "数据研发运营一体化属于数据开发的哪种范式?" ], "initial_retrieval_details": {}, "sufficiency_check": { "is_sufficient": true, "confidence": 0.9, "reason": "事件信息和段落信息包含了回答查询所需的关键内容...", "iteration": 0 }, "current_sub_queries": [], "is_sufficient": true, "all_documents": [ { "page_content": "将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。", "metadata": { "node_id": "f81ab568ce6cfce72175a1087db911f899752c622460211efdc350d6c3167149", "node_type": "event", "ppr_score": 0.010572466066648786, "edge_score": 0.0, "passage_score": 0.0, "rank": 1, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "数据研发运营一体化(DataOps)是数据开发的新范式,将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据产品交付效率与质量,实现高质量数字化发展。", "metadata": { "node_id": "774a6133f9a25821d10ebab0d1745ac30d14a4016da4d3548b102f265e633a22", "node_type": "event", "ppr_score": 0.010507441770945349, "edge_score": 0.0, "passage_score": 0.0, "rank": 2, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。", "metadata": { "node_id": "5be46591a0a7ccd7266c2f0961280fd5df89d16e316f123585ebe001f09c5fe1", "node_type": "event", "ppr_score": 0.0039329590082037985, "edge_score": 0.0, "passage_score": 0.0, "rank": 3, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "DataOps 实践快速发展", "metadata": { "node_id": "20707ee6c13b5870e58f4eb4853f2bd6ddc6b0dff31966717b5f434d0a6dcc20", "node_type": "event", "ppr_score": 0.0031607432034283485, "edge_score": 0.0, "passage_score": 0.0, "rank": 4, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "加强数据生态系统的建设,鼓励实现数据开放共享。", "metadata": { "node_id": "cdc6337c8984c01a1379d9afa19eeb4ba81660be38053a846e0f250baf04ee62", "node_type": "event", "ppr_score": 0.0030987049352823657, "edge_score": 0.0, "passage_score": 0.0, "rank": 5, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。", "metadata": { "node_id": "f8d46e99bb67396a63859ea3eafb0dd619b62f57c9337d2e223051e0d4f9a200", "node_type": "event", "ppr_score": 0.0029801257142876357, "edge_score": 0.0, "passage_score": 0.0, "rank": 6, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "“数据二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "metadata": { "node_id": "90d9024251e5a8cdeca241f0c6166214b4243126f3384975deec9474b31cf45a", "node_type": "event", "ppr_score": 0.00294948130630058, "edge_score": 0.0, "passage_score": 0.0, "rank": 7, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "编写了一篇关于DataOps实践指南的文章", "metadata": { "node_id": "c2db1984e1da816b055b75fa3cc6c40f8c2d7094fc237c3db4ea6b00f7faf4b7", "node_type": "event", "ppr_score": 0.002650372216873566, "edge_score": 0.0, "passage_score": 0.0, "rank": 8, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "实施数据治理策略", "metadata": { "node_id": "0f4eb7cf5f30d4738a7385127c011103981bc088ec749f8af1ed0b6c15144c44", "node_type": "event", "ppr_score": 0.0026066365952582106, "edge_score": 0.0, "passage_score": 0.0, "rank": 9, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "提高开发效率和产品质量", "metadata": { "node_id": "b08abe3367a833819cdadc8902d43927e0dc1b8a28c6729d5fa9913641ba27a5", "node_type": "event", "ppr_score": 0.0026066365952582106, "edge_score": 0.0, "passage_score": 0.0, "rank": 10, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "建立数据管道", "metadata": { "node_id": "849a3d4c2d25164af0bce9c9cbdbfd592254d7fc9af293f4be1484277c81ac76", "node_type": "event", "ppr_score": 0.0025841050307877397, "edge_score": 0.0, "passage_score": 0.0, "rank": 11, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "集成DevOps实践", "metadata": { "node_id": "fcc78de5daaa3405a2c6e340aee37d2a90e80892ad8326c4ab92aff1c0e6047b", "node_type": "event", "ppr_score": 0.0025841050307877397, "edge_score": 0.0, "passage_score": 0.0, "rank": 12, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "定位:总结各行业最佳实践,提炼核心理论框架,推动 DataOps 理念的广泛应用,加速数据驱动型企业的能力建设", "metadata": { "node_id": "805ccf4b8afad7fdc7adf220f8be68488e531cfbb23f6b8ea12ce6eeb52fea63", "node_type": "event", "ppr_score": 0.0021946248619525537, "edge_score": 0.0, "passage_score": 0.0, "rank": 13, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "《DataOps 实践指南 2.0》发布", "metadata": { "node_id": "883d48746a2c6d5088fb85af475dede23902ac92177369e7704f30cc11fb98da", "node_type": "event", "ppr_score": 0.0021946248619525537, "edge_score": 0.0, "passage_score": 0.0, "rank": 14, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "《DataOps 实践指南 1.0》发布", "metadata": { "node_id": "1399b28642963b0ae525bae264742aabd43a3f9bcb85d98c0ca6566a1c1ba26d", "node_type": "event", "ppr_score": 0.0021799987107802192, "edge_score": 0.0, "passage_score": 0.0, "rank": 15, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "充分利用AI和大模型技术优化数据策略。", "metadata": { "node_id": "8d94db6c8cd0cf40c82b98b1751dd5f3c4eca41eb3b6fe7533aa2fba808ee136", "node_type": "event", "ppr_score": 0.0020987038542000886, "edge_score": 0.0, "passage_score": 0.0, "rank": 16, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "“数据二十条”的提出", "metadata": { "node_id": "327e8729397c50b72a02a2e0b4edbb84c4d8ef516d62def1987f0d2c5b0a13c7", "node_type": "event", "ppr_score": 0.0020985315928059856, "edge_score": 0.0, "passage_score": 0.0, "rank": 17, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "metadata": { "node_id": "e38d3e0e4674b563982bcd5cd1ec26a0b1ca3f132d337daa172449acae175c0d", "node_type": "event", "ppr_score": 0.0020985315928059856, "edge_score": 0.0, "passage_score": 0.0, "rank": 18, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化(DataOps)是数据开发的新范式,将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量,实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。", "metadata": { "node_id": "da7aaabf868de83a9fc286404d784e30982b7ba7a5e56c5c1707922e5e39dcf1", "node_type": "text", "ppr_score": 0.06724765945835376, "edge_score": 0.0, "passage_score": 0.41817019751008905, "rank": 19, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1:盲目跟风,没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2:决策机制模糊,导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3:过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4:追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向", "metadata": { "node_id": "9c60e1d67a9be847f2b2e95f859a18bf9940b7854a020b276d921f9caa0bc7a6", "node_type": "text", "ppr_score": 0.012009503402721593, "edge_score": 0.0, "passage_score": 0.44231617085621516, "rank": 20, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "# DataOps 能力框架——核心环节\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了不断提高数据产品交付效率与质量,实现高质量数字化发展的目标。DataOps 的数据流水线以数据工程化能力为核心,构建出数据研发管理、数据交付管理、数据运维和价值运营四个环节。\\n\\n### 数据研发管理\\n\\n#### 需求管理\\n\\n采集 → 分析 → 确认 → 实施 → 变更\\n\\n数据需求全流程管理\\n\\n#### 设计管理\\n\\n制度 + 技术\\n\\n管理\\n\\n模型设计\\n\\n加工设计\\n\\n标准设计\\n\\n质量设计\\n\\n安全设计\\n\\n#### 数据开发\\n\\n集成存储、实施、部署、维护数据解决方案\\n\\n数据处理、加工、管理、使用\\n\\n提升数据资源价值\\n\\n#### 自助分析\\n\\n自助式的数据二次处理\\n\\n### 数据交付管理\\n\\n#### 配置管理\\n\\n版本控制\\n\\n环境管理\\n\\n代码版本管理\\n\\n数据版本管理\\n\\n保证\\n\\n各阶段数据随时可用性、可验证性\\n\\n#### 测试管理\\n\\n自动化测试流水线\\n\\n管理\\n\\n单元测试\\n\\n集成测试\\n\\n提前发现问题处理问题\\n\\n保证\\n\\n#### 部署与发布管理\\n\\n自动化部署发布流水线\\n\\n聚焦\\n\\n工具的自动化和标准化\\n\\n保证\\n\\n加快数据部署效率降低人为操作风险\\n\\n### 数据运维\\n\\n#### 监控管理\\n\\n监控体系\\n\\n监控预警\\n\\n开发流水线运行情况质量情况\\n\\n#### 资源管理\\n\\n调度优化合理分\\n\\n数据资源\\n\\n计算资源\\n\\n存储资源\\n\\n优化\\n\\n运维成本\\n\\n#### 变更管理\\n\\n标准化、敏捷化的变更流程\\n\\n应对\\n\\n开发流水线各类变更场景\\n\\n#### 异常管理\\n\\n构建\\n\\n异常管理知识库\\n\\n自动化运维能力\\n\\n提升\\n\\n运维效率\\n\\n#### 持续优化\\n\\n调优\\n\\n流水线任务编排\\n\\n平台配置\\n\\n提升\\n\\n开发流水线性能\\n\\n### 价值运营\\n\\n#### 成本管理\\n\\n细化数据产品交付\\n\\n维护成本核算\\n\\n精细控制资源投入\\n\\n识别、减少浪费\\n\\n#### 持续变革\\n\\n打造反馈机制\\n\\n收集各环节堵点问题\\n\\n持续改进\\n\\n#### 量化驱动\\n\\n数据开发流水线\\n\\n评估\\n\\n交付效率\\n\\n需求响应速度\\n\\n优化\\n\\n工作流程资源分配策略", "metadata": { "node_id": "b406044bae110b82a0e2675cbde336748e6f77bb6b6c43a3455c3fd3a3515acd", "node_type": "text", "ppr_score": 0.011504323663471252, "edge_score": 0.0, "passage_score": 0.4469295589636258, "rank": 21, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "随着数据要素流通政策的不断完善,要素市场的健康有序发展", "metadata": { "node_id": "d5ee55564eb846724ff58c21d820cd8a707a3aa64993c6fb3ceb062f52fddc05", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 10, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "企业开展数据流通服务创造了良好的环境。", "metadata": { "node_id": "1f50d1daccca477b7b1e644e4eb617d9316bb954774db3d5dd038e306e1a6e5a", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 11, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "越来越多的企业利用自身数据积累优势和服务能力优势", "metadata": { "node_id": "6f77170a71aebf529613ccac3dd7252fc4911b4a1d0fb084dd5374a51121d2f1", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 12, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "形成可流通交易的数据产品,提供针对性的数据产品与解决方案。", "metadata": { "node_id": "7ec588bfc0ede7713e7fa7950f18b2d4f33de7af72a6a28a2c70d526ba76f7c1", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 13, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "形成可流通交易的数据产品", "metadata": { "node_id": "af756325c7eb8bcacb9cdcc0365ac39ae0defaf76c6b21381a71a748f7729da2", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 14, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "完善数据产品全流程合规管理,充分实现数据赋能发展。", "metadata": { "node_id": "873aad5027e0598151b41f59c9554eb262e37352d17d6d2a0d7c51ab5e755101", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 15, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "构建集开发、治理、运营于一体的自动化数据流水线", "metadata": { "node_id": "27c34ad3252e49acf2326f3352b022b520bdc7c53de967924622ce36f8753654", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 16, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "实现高质量数字化发展。", "metadata": { "node_id": "751e3c9cd4d45f7bcd7da61ea90c2299b7676729eb96aa464296dde09923b53e", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 17, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "充分利用AI和大模型技术", "metadata": { "node_id": "d7ece308c8546b4db4fd53e3eb69d19f22bd8ed01f15234e34a92408ffc74fc8", "node_type": "event", "ppr_score": 0.002100241778052108, "edge_score": 0.0, "passage_score": 0.0, "rank": 18, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "# DataOps 能力框架——实践保障\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了保证 DataOps 研发流水线能够持续高效运转和迭代完善,企业需要有力的保障措施。本指南提出了组织、工具和安全三个维度的保障要求。这些要求的目标是引导企业以全局最优为目标,保障数据研发流水线的平滑运作。\\n\\n### 系统工具\\n\\n#### 数据需求管理\\n\\n| 手段 | 构建数据需求全生命周期的管理能力 |\\n\\n| :--- | :--------------------------------- |\\n\\n| 目标 | 支持流程的设计和共享 |\\n\\n| 进一步要求 | 数据需求方主动通过自助分析平台进行数据探查 |\\n\\n#### 数据研发治理一体化\\n\\n| 原则 | 先设计、后开发、先标准、后建模 |\\n\\n| :--- | :------------------------------- |\\n\\n| 手段 | 设计管理、开发管理、数据应用 |\\n\\n| 目的 | 规范即设计,设计即开发,开发即治理 |\\n\\n#### 数据自动化交付部署\\n\\n![数据自动化交付部署流程图](image_1.png)\\n\\n#### 数据一体化运维\\n\\n| 对象 | 数据研发全链路的监测、运维监控、运维告警、运维操作 |\\n\\n| :--- | :---------------------------------------------------- |\\n\\n| 手段 | 可视化方式 |\\n\\n| 目的 | 实时展现研发效能、数据质量 |\\n\\n### 组织管理\\n\\n#### 组织架构\\n\\n合理配置\\n\\n{ | 数据技术架构 |\\n\\n| 数据人员架构 |\\n\\n#### 岗位角色\\n\\n| | 设置相应的岗位角色 |\\n\\n| :--- | :------------------ |\\n\\n| | 明确晋升路线与考核方式 |\\n\\n#### 协作协同\\n\\n依托\\n\\n| 敏捷方法 |\\n\\n| :-------- |\\n\\n| 关注团队、工具间的协同问题持续进行优化 |\\n\\n解决\\n\\n### 安全管控\\n\\n#### 安全风险策略\\n\\n加强\\n\\n{ | 数据研发全生命周期 |\\n\\n| 风险识别 |\\n\\n| 风险预测 |\\n\\n#### 风险管理\\n\\n外部法律法规\\n\\n+ 监管要求\\n\\n+ 企业内部安全需求\\n\\n健全\\n\\n风险管理策略\\n\\n#### 安全测试\\n\\n数据研发过程的各环节进行安全测试\\n\\n保证\\n\\n提前发现问题处理问题", "metadata": { "node_id": "21cecc0bf37f351e693eaf71192ada4887caa03f90c22fe314b582966d6ccc79", "node_type": "text", "ppr_score": 0.010995675305229689, "edge_score": 0.0, "passage_score": 0.4195107940575388, "rank": 20, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化属于数据开发的哪种范式?", "pagerank_available": true } }, { "page_content": "数据研发管理", "metadata": { "node_id": "d9972ebdea4e9d9d8a9ba8b2200ac3772dcbd4fee37be649d3a6b0433249b9ab", "node_type": "event", "ppr_score": 0.023246484808455047, "edge_score": 1.7718862, "passage_score": 0.0, "rank": 1, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "数据研发管理是指以研发治理一体化为目标,构建标准化的数据开发流程。", "metadata": { "node_id": "8dc466db70bc34d95662bdf843dbb0f390e957591aeec9468f55fa0dc69b4c34", "node_type": "event", "ppr_score": 0.02020770519800818, "edge_score": 1.8187168, "passage_score": 0.0, "rank": 2, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "构建标准化的数据开发流程", "metadata": { "node_id": "b928d951a91636e6aedbc873fac2fbd9d73a06b02ff6092f3ebf243ccf8982ac", "node_type": "event", "ppr_score": 0.011192182856504104, "edge_score": 1.739756, "passage_score": 0.0, "rank": 4, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "四个核心环节包括数据研发管理、数据交付管理、数据运维和价值运营。", "metadata": { "node_id": "48449fefcf28310ab37a70d327afc9c5f810679750a3b22ae752a1ba169a2a49", "node_type": "event", "ppr_score": 0.007187913582002911, "edge_score": 0.0, "passage_score": 0.0, "rank": 5, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "DataOps 的数据流水线以数据工程化能力为核心,构建出数据研发管理、数据交付管理、数据运维和价值运营四个环节。", "metadata": { "node_id": "fa19992ada61ad05720dab20271cecae03b371638867632a55a9e60447d63a9b", "node_type": "event", "ppr_score": 0.006821800269394817, "edge_score": 0.0, "passage_score": 0.0, "rank": 6, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "价值运营", "metadata": { "node_id": "5f8a25bcafd3750048a9b422603e9bdc263a540658336ea661cdbd56a2d506ef", "node_type": "event", "ppr_score": 0.004941478680384531, "edge_score": 0.0, "passage_score": 0.0, "rank": 8, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "数据运维", "metadata": { "node_id": "6922af4509f988ce1ada957221398173b60510f1747579b6455dc5602303fdf3", "node_type": "event", "ppr_score": 0.004923659363743076, "edge_score": 0.0, "passage_score": 0.0, "rank": 9, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "数据交付管理", "metadata": { "node_id": "8a8705dd108bcd8a3ba4b6bea5c08578ba3b5f2731f5c21c5365685fdb6aca0c", "node_type": "event", "ppr_score": 0.0048574468575233055, "edge_score": 0.0, "passage_score": 0.0, "rank": 10, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "数据开发流水线包括数据的研发管理、交付管理、数据运维和价值运营。", "metadata": { "node_id": "ae8da5d619b85f37af96a048fa5ffb0373a9573f26efdb2d130f1e0e45c6ee9d", "node_type": "event", "ppr_score": 0.004317618484205715, "edge_score": 0.0, "passage_score": 0.0, "rank": 11, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "系统工具", "metadata": { "node_id": "6ea702ad9c2b4973976b41aa5d1308762c6fe68e907e6450f76863f8457fdebd", "node_type": "event", "ppr_score": 0.004152793686897644, "edge_score": 0.0, "passage_score": 0.0, "rank": 12, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "数据运维是指以全面立体的持续监控、发现、处理数据问题为目标,构建全链路可观测能力。", "metadata": { "node_id": "a40c90867992dceeb45864dce818bf9eb1b8b4c0f555283aed9dbbf7e39b7ff6", "node_type": "event", "ppr_score": 0.0040965735241955585, "edge_score": 0.0, "passage_score": 0.0, "rank": 13, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "能力框架包括四个核心环节", "metadata": { "node_id": "ac4280609afb3682e13bcda246dfc35598f4e8bfb958920c8141e5210961b528", "node_type": "event", "ppr_score": 0.0040682464572886256, "edge_score": 0.0, "passage_score": 0.0, "rank": 14, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "组织管理是指以打造敏捷、协同的数据驱动型组织为目标,优化组织架构、明晰岗位职能。", "metadata": { "node_id": "e8e5164ea817062f43f78594f8022252f089d04425e6165e89cca9600aaf4776", "node_type": "event", "ppr_score": 0.0038343646373893716, "edge_score": 0.0, "passage_score": 0.0, "rank": 15, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "安全管控是指以保证个人隐私、数据安全为目标,将安全管控嵌入到数据流水线中,构建数据研发全生命周期的安全管理能力。", "metadata": { "node_id": "50b027e9aa20ac15f385439b28126603da80ac3db4d20f63678adf8ca035a341", "node_type": "event", "ppr_score": 0.0038343646373893716, "edge_score": 0.0, "passage_score": 0.0, "rank": 16, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "DataOps 能力模型围绕数据开发流水线,从业务需求出发,以创造业务价值为目标,形成“4+3”的能力框架。", "metadata": { "node_id": "6cd68d43ded1b16caf5905f9dfa2ef559d18036d3782f5db0b34e1025f044e2a", "node_type": "event", "ppr_score": 0.003618296438609653, "edge_score": 0.0, "passage_score": 0.0, "rank": 17, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "组织管理", "metadata": { "node_id": "dde28d3ac66cd93e91d5987cc8684c584ab4702976282ec345a018727eb49870", "node_type": "event", "ppr_score": 0.0035773528421498943, "edge_score": 0.0, "passage_score": 0.0, "rank": 18, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化是什么?", "pagerank_available": true } }, { "page_content": "# DataOps 能力框架解读\\n\\n## 2024DataOPS发展大会\\n\\nDataOps 能力模型围绕数据开发流水线,从业务需求出发,以创造业务价值为目标,形成“**4+3**”的能力框架,即 **4 个核心环节**和 **3 项实践保障**。数据开发流水线包括数据的研发管理、交付管理、数据运维和价值运营,保障职能用于支撑流水线顺畅运行,包括系统工具、组织管理和安全管控。\\n\\n### 四个核心环节\\n\\n* **数据研发管理**\\n\\n* 数据研发管理是指以研发治理一体化为目标,构建标准化的数据开发流程。\\n\\n* **数据交付管理**\\n\\n* 数据交付管理是指以提升交付效率和质量为目标,建设持续测试和交付能力。\\n\\n* **数据运维**\\n\\n* 数据运维是指以全面立体的持续监控、发现、处理数据问题为目标,构建全链路可观测能力。\\n\\n* **价值运营**\\n\\n* 价值运营是指以精益运营数据为目标,打造量化驱动变革的能力。\\n\\n### 三项实践保障\\n\\n* **系统工具**\\n\\n* 系统工具是指以企业“**业务用数,研发供数**”的实际流程为基础,构建一体化的技术平台。\\n\\n* **组织管理**\\n\\n* 组织管理是指以打造敏捷、协同的数据驱动型组织为目标,优化组织架构、明晰岗位职能。\\n\\n* **安全管控**\\n\\n* 安全管控是指以保证个人隐私、数据安全为目标,将安全管控嵌入到数据流水线中,构建数据研发全生命周期的安全管理能力。", "metadata": { "node_id": "324de3b8d42ff41213cf9e7a5507b2288fa03b6646b7a1cc3586cad487499e3b", "node_type": "text", "ppr_score": 0.05972717205193073, "edge_score": 0.0, "passage_score": 0.4154779517121528, "rank": 19, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化是什么?", "pagerank_available": true } } ], "all_passages": [ "将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。", "数据研发运营一体化(DataOps)是数据开发的新范式,将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据产品交付效率与质量,实现高质量数字化发展。", "随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。", "DataOps 实践快速发展", "加强数据生态系统的建设,鼓励实现数据开放共享。", "随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。", "“数据二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "编写了一篇关于DataOps实践指南的文章", "实施数据治理策略", "提高开发效率和产品质量", "建立数据管道", "集成DevOps实践", "定位:总结各行业最佳实践,提炼核心理论框架,推动 DataOps 理念的广泛应用,加速数据驱动型企业的能力建设", "《DataOps 实践指南 2.0》发布", "《DataOps 实践指南 1.0》发布", "充分利用AI和大模型技术优化数据策略。", "“数据二十条”的提出", "健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化(DataOps)是数据开发的新范式,将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量,实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。", "# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1:盲目跟风,没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2:决策机制模糊,导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3:过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4:追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向", "# DataOps 能力框架——核心环节\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了不断提高数据产品交付效率与质量,实现高质量数字化发展的目标。DataOps 的数据流水线以数据工程化能力为核心,构建出数据研发管理、数据交付管理、数据运维和价值运营四个环节。\\n\\n### 数据研发管理\\n\\n#### 需求管理\\n\\n采集 → 分析 → 确认 → 实施 → 变更\\n\\n数据需求全流程管理\\n\\n#### 设计管理\\n\\n制度 + 技术\\n\\n管理\\n\\n模型设计\\n\\n加工设计\\n\\n标准设计\\n\\n质量设计\\n\\n安全设计\\n\\n#### 数据开发\\n\\n集成存储、实施、部署、维护数据解决方案\\n\\n数据处理、加工、管理、使用\\n\\n提升数据资源价值\\n\\n#### 自助分析\\n\\n自助式的数据二次处理\\n\\n### 数据交付管理\\n\\n#### 配置管理\\n\\n版本控制\\n\\n环境管理\\n\\n代码版本管理\\n\\n数据版本管理\\n\\n保证\\n\\n各阶段数据随时可用性、可验证性\\n\\n#### 测试管理\\n\\n自动化测试流水线\\n\\n管理\\n\\n单元测试\\n\\n集成测试\\n\\n提前发现问题处理问题\\n\\n保证\\n\\n#### 部署与发布管理\\n\\n自动化部署发布流水线\\n\\n聚焦\\n\\n工具的自动化和标准化\\n\\n保证\\n\\n加快数据部署效率降低人为操作风险\\n\\n### 数据运维\\n\\n#### 监控管理\\n\\n监控体系\\n\\n监控预警\\n\\n开发流水线运行情况质量情况\\n\\n#### 资源管理\\n\\n调度优化合理分\\n\\n数据资源\\n\\n计算资源\\n\\n存储资源\\n\\n优化\\n\\n运维成本\\n\\n#### 变更管理\\n\\n标准化、敏捷化的变更流程\\n\\n应对\\n\\n开发流水线各类变更场景\\n\\n#### 异常管理\\n\\n构建\\n\\n异常管理知识库\\n\\n自动化运维能力\\n\\n提升\\n\\n运维效率\\n\\n#### 持续优化\\n\\n调优\\n\\n流水线任务编排\\n\\n平台配置\\n\\n提升\\n\\n开发流水线性能\\n\\n### 价值运营\\n\\n#### 成本管理\\n\\n细化数据产品交付\\n\\n维护成本核算\\n\\n精细控制资源投入\\n\\n识别、减少浪费\\n\\n#### 持续变革\\n\\n打造反馈机制\\n\\n收集各环节堵点问题\\n\\n持续改进\\n\\n#### 量化驱动\\n\\n数据开发流水线\\n\\n评估\\n\\n交付效率\\n\\n需求响应速度\\n\\n优化\\n\\n工作流程资源分配策略", "随着数据要素流通政策的不断完善,要素市场的健康有序发展", "企业开展数据流通服务创造了良好的环境。", "越来越多的企业利用自身数据积累优势和服务能力优势", "形成可流通交易的数据产品,提供针对性的数据产品与解决方案。", "形成可流通交易的数据产品", "完善数据产品全流程合规管理,充分实现数据赋能发展。", "构建集开发、治理、运营于一体的自动化数据流水线", "实现高质量数字化发展。", "充分利用AI和大模型技术", "# DataOps 能力框架——实践保障\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了保证 DataOps 研发流水线能够持续高效运转和迭代完善,企业需要有力的保障措施。本指南提出了组织、工具和安全三个维度的保障要求。这些要求的目标是引导企业以全局最优为目标,保障数据研发流水线的平滑运作。\\n\\n### 系统工具\\n\\n#### 数据需求管理\\n\\n| 手段 | 构建数据需求全生命周期的管理能力 |\\n\\n| :--- | :--------------------------------- |\\n\\n| 目标 | 支持流程的设计和共享 |\\n\\n| 进一步要求 | 数据需求方主动通过自助分析平台进行数据探查 |\\n\\n#### 数据研发治理一体化\\n\\n| 原则 | 先设计、后开发、先标准、后建模 |\\n\\n| :--- | :------------------------------- |\\n\\n| 手段 | 设计管理、开发管理、数据应用 |\\n\\n| 目的 | 规范即设计,设计即开发,开发即治理 |\\n\\n#### 数据自动化交付部署\\n\\n![数据自动化交付部署流程图](image_1.png)\\n\\n#### 数据一体化运维\\n\\n| 对象 | 数据研发全链路的监测、运维监控、运维告警、运维操作 |\\n\\n| :--- | :---------------------------------------------------- |\\n\\n| 手段 | 可视化方式 |\\n\\n| 目的 | 实时展现研发效能、数据质量 |\\n\\n### 组织管理\\n\\n#### 组织架构\\n\\n合理配置\\n\\n{ | 数据技术架构 |\\n\\n| 数据人员架构 |\\n\\n#### 岗位角色\\n\\n| | 设置相应的岗位角色 |\\n\\n| :--- | :------------------ |\\n\\n| | 明确晋升路线与考核方式 |\\n\\n#### 协作协同\\n\\n依托\\n\\n| 敏捷方法 |\\n\\n| :-------- |\\n\\n| 关注团队、工具间的协同问题持续进行优化 |\\n\\n解决\\n\\n### 安全管控\\n\\n#### 安全风险策略\\n\\n加强\\n\\n{ | 数据研发全生命周期 |\\n\\n| 风险识别 |\\n\\n| 风险预测 |\\n\\n#### 风险管理\\n\\n外部法律法规\\n\\n+ 监管要求\\n\\n+ 企业内部安全需求\\n\\n健全\\n\\n风险管理策略\\n\\n#### 安全测试\\n\\n数据研发过程的各环节进行安全测试\\n\\n保证\\n\\n提前发现问题处理问题", "数据研发管理", "数据研发管理是指以研发治理一体化为目标,构建标准化的数据开发流程。", "构建标准化的数据开发流程", "四个核心环节包括数据研发管理、数据交付管理、数据运维和价值运营。", "DataOps 的数据流水线以数据工程化能力为核心,构建出数据研发管理、数据交付管理、数据运维和价值运营四个环节。", "价值运营", "数据运维", "数据交付管理", "数据开发流水线包括数据的研发管理、交付管理、数据运维和价值运营。", "系统工具", "数据运维是指以全面立体的持续监控、发现、处理数据问题为目标,构建全链路可观测能力。", "能力框架包括四个核心环节", "组织管理是指以打造敏捷、协同的数据驱动型组织为目标,优化组织架构、明晰岗位职能。", "安全管控是指以保证个人隐私、数据安全为目标,将安全管控嵌入到数据流水线中,构建数据研发全生命周期的安全管理能力。", "DataOps 能力模型围绕数据开发流水线,从业务需求出发,以创造业务价值为目标,形成“4+3”的能力框架。", "组织管理", "# DataOps 能力框架解读\\n\\n## 2024DataOPS发展大会\\n\\nDataOps 能力模型围绕数据开发流水线,从业务需求出发,以创造业务价值为目标,形成“**4+3**”的能力框架,即 **4 个核心环节**和 **3 项实践保障**。数据开发流水线包括数据的研发管理、交付管理、数据运维和价值运营,保障职能用于支撑流水线顺畅运行,包括系统工具、组织管理和安全管控。\\n\\n### 四个核心环节\\n\\n* **数据研发管理**\\n\\n* 数据研发管理是指以研发治理一体化为目标,构建标准化的数据开发流程。\\n\\n* **数据交付管理**\\n\\n* 数据交付管理是指以提升交付效率和质量为目标,建设持续测试和交付能力。\\n\\n* **数据运维**\\n\\n* 数据运维是指以全面立体的持续监控、发现、处理数据问题为目标,构建全链路可观测能力。\\n\\n* **价值运营**\\n\\n* 价值运营是指以精益运营数据为目标,打造量化驱动变革的能力。\\n\\n### 三项实践保障\\n\\n* **系统工具**\\n\\n* 系统工具是指以企业“**业务用数,研发供数**”的实际流程为基础,构建一体化的技术平台。\\n\\n* **组织管理**\\n\\n* 组织管理是指以打造敏捷、协同的数据驱动型组织为目标,优化组织架构、明晰岗位职能。\\n\\n* **安全管控**\\n\\n* 安全管控是指以保证个人隐私、数据安全为目标,将安全管控嵌入到数据流水线中,构建数据研发全生命周期的安全管理能力。" ], "passage_sources": [ "原始查询-event-f81ab568ce6cfce72175a1087db911f899752c622460211efdc350d6c3167149", "原始查询-event-774a6133f9a25821d10ebab0d1745ac30d14a4016da4d3548b102f265e633a22", "原始查询-event-5be46591a0a7ccd7266c2f0961280fd5df89d16e316f123585ebe001f09c5fe1", "原始查询-event-20707ee6c13b5870e58f4eb4853f2bd6ddc6b0dff31966717b5f434d0a6dcc20", "原始查询-event-cdc6337c8984c01a1379d9afa19eeb4ba81660be38053a846e0f250baf04ee62", "原始查询-event-f8d46e99bb67396a63859ea3eafb0dd619b62f57c9337d2e223051e0d4f9a200", "原始查询-event-90d9024251e5a8cdeca241f0c6166214b4243126f3384975deec9474b31cf45a", "原始查询-event-c2db1984e1da816b055b75fa3cc6c40f8c2d7094fc237c3db4ea6b00f7faf4b7", "原始查询-event-0f4eb7cf5f30d4738a7385127c011103981bc088ec749f8af1ed0b6c15144c44", "原始查询-event-b08abe3367a833819cdadc8902d43927e0dc1b8a28c6729d5fa9913641ba27a5", "原始查询-event-849a3d4c2d25164af0bce9c9cbdbfd592254d7fc9af293f4be1484277c81ac76", "原始查询-event-fcc78de5daaa3405a2c6e340aee37d2a90e80892ad8326c4ab92aff1c0e6047b", "原始查询-event-805ccf4b8afad7fdc7adf220f8be68488e531cfbb23f6b8ea12ce6eeb52fea63", "原始查询-event-883d48746a2c6d5088fb85af475dede23902ac92177369e7704f30cc11fb98da", "原始查询-event-1399b28642963b0ae525bae264742aabd43a3f9bcb85d98c0ca6566a1c1ba26d", "原始查询-event-8d94db6c8cd0cf40c82b98b1751dd5f3c4eca41eb3b6fe7533aa2fba808ee136", "原始查询-event-327e8729397c50b72a02a2e0b4edbb84c4d8ef516d62def1987f0d2c5b0a13c7", "原始查询-event-e38d3e0e4674b563982bcd5cd1ec26a0b1ca3f132d337daa172449acae175c0d", "原始查询-text-da7aaabf868de83a9fc286404d784e30982b7ba7a5e56c5c1707922e5e39dcf1", "原始查询-text-9c60e1d67a9be847f2b2e95f859a18bf9940b7854a020b276d921f9caa0bc7a6", "原始查询-text-b406044bae110b82a0e2675cbde336748e6f77bb6b6c43a3455c3fd3a3515acd", "子查询2-event-d5ee55564eb846724ff58c21d820cd8a707a3aa64993c6fb3ceb062f52fddc05", "子查询2-event-1f50d1daccca477b7b1e644e4eb617d9316bb954774db3d5dd038e306e1a6e5a", "子查询2-event-6f77170a71aebf529613ccac3dd7252fc4911b4a1d0fb084dd5374a51121d2f1", "子查询2-event-7ec588bfc0ede7713e7fa7950f18b2d4f33de7af72a6a28a2c70d526ba76f7c1", "子查询2-event-af756325c7eb8bcacb9cdcc0365ac39ae0defaf76c6b21381a71a748f7729da2", "子查询2-event-873aad5027e0598151b41f59c9554eb262e37352d17d6d2a0d7c51ab5e755101", "子查询2-event-27c34ad3252e49acf2326f3352b022b520bdc7c53de967924622ce36f8753654", "子查询2-event-751e3c9cd4d45f7bcd7da61ea90c2299b7676729eb96aa464296dde09923b53e", "子查询2-event-d7ece308c8546b4db4fd53e3eb69d19f22bd8ed01f15234e34a92408ffc74fc8", "子查询2-text-21cecc0bf37f351e693eaf71192ada4887caa03f90c22fe314b582966d6ccc79", "子查询1-event-d9972ebdea4e9d9d8a9ba8b2200ac3772dcbd4fee37be649d3a6b0433249b9ab", "子查询1-event-8dc466db70bc34d95662bdf843dbb0f390e957591aeec9468f55fa0dc69b4c34", "子查询1-event-b928d951a91636e6aedbc873fac2fbd9d73a06b02ff6092f3ebf243ccf8982ac", "子查询1-event-48449fefcf28310ab37a70d327afc9c5f810679750a3b22ae752a1ba169a2a49", "子查询1-event-fa19992ada61ad05720dab20271cecae03b371638867632a55a9e60447d63a9b", "子查询1-event-5f8a25bcafd3750048a9b422603e9bdc263a540658336ea661cdbd56a2d506ef", "子查询1-event-6922af4509f988ce1ada957221398173b60510f1747579b6455dc5602303fdf3", "子查询1-event-8a8705dd108bcd8a3ba4b6bea5c08578ba3b5f2731f5c21c5365685fdb6aca0c", "子查询1-event-ae8da5d619b85f37af96a048fa5ffb0373a9573f26efdb2d130f1e0e45c6ee9d", "子查询1-event-6ea702ad9c2b4973976b41aa5d1308762c6fe68e907e6450f76863f8457fdebd", "子查询1-event-a40c90867992dceeb45864dce818bf9eb1b8b4c0f555283aed9dbbf7e39b7ff6", "子查询1-event-ac4280609afb3682e13bcda246dfc35598f4e8bfb958920c8141e5210961b528", "子查询1-event-e8e5164ea817062f43f78594f8022252f089d04425e6165e89cca9600aaf4776", "子查询1-event-50b027e9aa20ac15f385439b28126603da80ac3db4d20f63678adf8ca035a341", "子查询1-event-6cd68d43ded1b16caf5905f9dfa2ef559d18036d3782f5db0b34e1025f044e2a", "子查询1-event-dde28d3ac66cd93e91d5987cc8684c584ab4702976282ec345a018727eb49870", "子查询1-text-324de3b8d42ff41213cf9e7a5507b2288fa03b6646b7a1cc3586cad487499e3b" ], "pagerank_data_available": true, "pagerank_summary": {}, "concept_exploration_results": {}, "exploration_round": 0, "debug_info": { "total_time": 14.900372982025146, "retrieval_calls": 1, "llm_calls": 4, "langsmith_project": "rag-api-service", "token_usage_summary": { "has_llm": true, "has_generator": true, "last_call": { "prompt_tokens": 3643, "completion_tokens": 37, "total_tokens": 3680 }, "total_usage": { "prompt_tokens": 4652, "completion_tokens": 189, "total_tokens": 4841, "call_count": 3 }, "model_name": "qwen2-7b-instruct", "has_last_usage": true, "has_total_usage": true }, "complexity_analysis": { "is_complex": true, "complexity_level": "complex", "confidence": 0.95, "reason": "这是一个复杂查询,因为用户询问的是数据研发运营一体化(DataOps)在数据开发范式中的定位。这个问题可能涉及到对DataOps概念的理解、与传统数据开发方法的对比以及DataOps如何优化数据开发流程等方面的知识。为了回答这个问题,可能需要生成多个子查询来探讨DataOps的核心原则、实践案例和其在不同行业中的应用,以及与传统数据开发方法的区别。" }, "debug_mode_analysis": { "debug_mode": "0", "debug_override": {}, "path_override_applied": false }, "sufficiency_analysis": { "final_sufficiency": true, "sufficiency_check_details": { "is_sufficient": true, "confidence": 0.9, "reason": "事件信息和段落信息包含了回答查询所需的关键内容...", "iteration": 0 }, "iteration_sufficiency_history": [], "sufficiency_progression": { "status": "no_sufficiency_checks" } }, "routing_analysis": { "total_routing_decisions": 1, "sub_query_generation_count": 0, "parallel_retrieval_count": 0, "pagerank_collection_count": 0 }, "concept_exploration_analysis": { "exploration_enabled": false, "exploration_rounds": 0, "pagerank_nodes_analyzed": 0, "successful_branches_total": 0, "total_branches_attempted": 0 } }, "iteration_history": [ { "iteration": 0, "query": "并行检索: 原始查询 + 2 个子查询", "passages_count": 48, "action": "retrieval" }, { "iteration": 0, "action": "sufficiency_check", "is_sufficient": true, "confidence": 0.9, "sub_queries_count": 0 }, { "iteration": 0, "action": "final_answer_generation", "answer_length": 6509 } ] }