first commit

This commit is contained in:
闫旭隆
2025-10-17 09:31:28 +08:00
commit 4698145045
589 changed files with 196795 additions and 0 deletions

View File

@ -0,0 +1,277 @@
from tqdm import tqdm
import argparse
import os
import csv
import json
import re
import hashlib
# Increase the field size limit
csv.field_size_limit(10 * 1024 * 1024) # 10 MB limit
# Function to compute a hash ID from text
def compute_hash_id(text):
# Use SHA-256 to generate a hash
hash_object = hashlib.sha256(text.encode('utf-8'))
return hash_object.hexdigest() # Return hash as a hex string
def clean_text(text):
# remove NUL as well
new_text = text.replace("\n", " ").replace("\r", " ").replace("\t", " ").replace("\v", " ").replace("\f", " ").replace("\b", " ").replace("\a", " ").replace("\e", " ").replace(";", ",")
new_text = new_text.replace("\x00", "")
new_text = re.sub(r'\s+', ' ', new_text).strip()
return new_text
def remove_NUL(text):
return text.replace("\x00", "")
def json2csv(dataset, data_dir, output_dir, test=False):
"""
Convert JSON files to CSV files for nodes, edges, and missing concepts.
Args:
dataset (str): Name of the dataset.
data_dir (str): Directory containing the JSON files.
output_dir (str): Directory to save the output CSV files.
test (bool): If True, run in test mode (process only 3 files).
"""
visited_nodes = set()
visited_hashes = set()
all_entities = set()
all_events = set()
all_relations = set()
file_dir_list = [f for f in os.listdir(data_dir) if dataset in f]
file_dir_list = sorted(file_dir_list)
if test:
file_dir_list = file_dir_list[:3]
print("Loading data from the json files")
print("Number of files: ", len(file_dir_list))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Define output file paths
node_csv_without_emb = os.path.join(output_dir, f"triple_nodes_{dataset}_from_json_without_emb.csv")
edge_csv_without_emb = os.path.join(output_dir, f"triple_edges_{dataset}_from_json_without_emb.csv")
node_text_file = os.path.join(output_dir, f"text_nodes_{dataset}_from_json.csv")
edge_text_file = os.path.join(output_dir, f"text_edges_{dataset}_from_json.csv")
missing_concepts_file = os.path.join(output_dir, f"missing_concepts_{dataset}_from_json.csv")
if test:
node_text_file = os.path.join(output_dir, f"text_nodes_{dataset}_from_json_test.csv")
edge_text_file = os.path.join(output_dir, f"text_edges_{dataset}_from_json_test.csv")
node_csv_without_emb = os.path.join(output_dir, f"triple_nodes_{dataset}_from_json_without_emb_test.csv")
edge_csv_without_emb = os.path.join(output_dir, f"triple_edges_{dataset}_from_json_without_emb_test.csv")
missing_concepts_file = os.path.join(output_dir, f"missing_concepts_{dataset}_from_json_test.csv")
# Open CSV files for writing
with open(node_text_file, "w", newline='', encoding='utf-8', errors='ignore') as csvfile_node_text, \
open(edge_text_file, "w", newline='', encoding='utf-8', errors='ignore') as csvfile_edge_text, \
open(node_csv_without_emb, "w", newline='', encoding='utf-8', errors='ignore') as csvfile_node, \
open(edge_csv_without_emb, "w", newline='', encoding='utf-8', errors='ignore') as csvfile_edge:
csv_writer_node_text = csv.writer(csvfile_node_text)
csv_writer_edge_text = csv.writer(csvfile_edge_text)
writer_node = csv.writer(csvfile_node)
writer_edge = csv.writer(csvfile_edge)
# Write headers
csv_writer_node_text.writerow(["text_id:ID", "original_text", ":LABEL"])
csv_writer_edge_text.writerow([":START_ID", ":END_ID", ":TYPE"])
writer_node.writerow(["name:ID", "type", "concepts", "synsets", ":LABEL"])
writer_edge.writerow([":START_ID", ":END_ID", "relation", "concepts", "synsets", ":TYPE"])
# Process each file
for file_dir in tqdm(file_dir_list):
print("Processing file for file ids: ", file_dir)
with open(os.path.join(data_dir, file_dir), "r") as jsonfile:
for line in jsonfile:
data = json.loads(line.strip())
original_text = data["original_text"]
original_text = remove_NUL(original_text)
if "Here is the passage." in original_text:
original_text = original_text.split("Here is the passage.")[-1]
eot_token = "<|eot_id|>"
original_text = original_text.split(eot_token)[0]
text_hash_id = compute_hash_id(original_text)
# Write the original text as nodes
if text_hash_id not in visited_hashes:
visited_hashes.add(text_hash_id)
csv_writer_node_text.writerow([text_hash_id, original_text, "Text"])
file_id = str(data["id"])
entity_relation_dict = data["entity_relation_dict"]
event_entity_relation_dict = data["event_entity_relation_dict"]
event_relation_dict = data["event_relation_dict"]
# Process entity triples
entity_triples = []
for entity_triple in entity_relation_dict:
try:
assert isinstance(entity_triple["Head"], str)
assert isinstance(entity_triple["Relation"], str)
assert isinstance(entity_triple["Tail"], str)
head_entity = entity_triple["Head"]
relation = entity_triple["Relation"]
tail_entity = entity_triple["Tail"]
# Clean the text
head_entity = clean_text(head_entity)
relation = clean_text(relation)
tail_entity = clean_text(tail_entity)
if head_entity.isspace() or len(head_entity) == 0 or tail_entity.isspace() or len(tail_entity) == 0:
continue
entity_triples.append((head_entity, relation, tail_entity))
except:
print(f"Error processing entity triple: {entity_triple}")
continue
# Process event triples
event_triples = []
for event_triple in event_relation_dict:
try:
assert isinstance(event_triple["Head"], str)
assert isinstance(event_triple["Relation"], str)
assert isinstance(event_triple["Tail"], str)
head_event = event_triple["Head"]
relation = event_triple["Relation"]
tail_event = event_triple["Tail"]
# Clean the text
head_event = clean_text(head_event)
relation = clean_text(relation)
tail_event = clean_text(tail_event)
if head_event.isspace() or len(head_event) == 0 or tail_event.isspace() or len(tail_event) == 0:
continue
event_triples.append((head_event, relation, tail_event))
except:
print(f"Error processing event triple: {event_triple}")
# Process event-entity triples
event_entity_triples = []
for event_entity_participations in event_entity_relation_dict:
if "Event" not in event_entity_participations or "Entity" not in event_entity_participations:
continue
if not isinstance(event_entity_participations["Event"], str) or not isinstance(event_entity_participations["Entity"], list):
continue
for entity in event_entity_participations["Entity"]:
if not isinstance(entity, str):
continue
entity = clean_text(entity)
event = clean_text(event_entity_participations["Event"])
if event.isspace() or len(event) == 0 or entity.isspace() or len(entity) == 0:
continue
event_entity_triples.append((event, "is participated by", entity))
# Write nodes and edges to CSV files
for entity_triple in entity_triples:
head_entity, relation, tail_entity = entity_triple
if head_entity is None or tail_entity is None or relation is None:
continue
if head_entity.isspace() or tail_entity.isspace() or relation.isspace():
continue
if len(head_entity) == 0 or len(tail_entity) == 0 or len(relation) == 0:
continue
# Add nodes to files
if head_entity not in visited_nodes:
visited_nodes.add(head_entity)
all_entities.add(head_entity)
writer_node.writerow([head_entity, "entity", [], [], "Node"])
csv_writer_edge_text.writerow([head_entity, text_hash_id, "Source"])
if tail_entity not in visited_nodes:
visited_nodes.add(tail_entity)
all_entities.add(tail_entity)
writer_node.writerow([tail_entity, "entity", [], [], "Node"])
csv_writer_edge_text.writerow([tail_entity, text_hash_id, "Source"])
all_relations.add(relation)
writer_edge.writerow([head_entity, tail_entity, relation, [], [], "Relation"])
for event_triple in event_triples:
head_event, relation, tail_event = event_triple
if head_event is None or tail_event is None or relation is None:
continue
if head_event.isspace() or tail_event.isspace() or relation.isspace():
continue
if len(head_event) == 0 or len(tail_event) == 0 or len(relation) == 0:
continue
# Add nodes to files
if head_event not in visited_nodes:
visited_nodes.add(head_event)
all_events.add(head_event)
writer_node.writerow([head_event, "event", [], [], "Node"])
csv_writer_edge_text.writerow([head_event, text_hash_id, "Source"])
if tail_event not in visited_nodes:
visited_nodes.add(tail_event)
all_events.add(tail_event)
writer_node.writerow([tail_event, "event", [], [], "Node"])
csv_writer_edge_text.writerow([tail_event, text_hash_id, "Source"])
all_relations.add(relation)
writer_edge.writerow([head_event, tail_event, relation, [], [], "Relation"])
for event_entity_triple in event_entity_triples:
head_event, relation, tail_entity = event_entity_triple
if head_event is None or tail_entity is None or relation is None:
continue
if head_event.isspace() or tail_entity.isspace() or relation.isspace():
continue
if len(head_event) == 0 or len(tail_entity) == 0 or len(relation) == 0:
continue
# Add nodes to files
if head_event not in visited_nodes:
visited_nodes.add(head_event)
all_events.add(head_event)
writer_node.writerow([head_event, "event", [], [], "Node"])
csv_writer_edge_text.writerow([head_event, text_hash_id, "Source"])
if tail_entity not in visited_nodes:
visited_nodes.add(tail_entity)
all_entities.add(tail_entity)
writer_node.writerow([tail_entity, "entity", [], [], "Node"])
csv_writer_edge_text.writerow([tail_entity, text_hash_id, "Source"])
all_relations.add(relation)
writer_edge.writerow([head_event, tail_entity, relation, [], [], "Relation"])
# Write missing concepts to CSV
with open(missing_concepts_file, "w", newline='', encoding='utf-8', errors='ignore') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["Name", "Type"])
for entity in all_entities:
writer.writerow([entity, "Entity"])
for event in all_events:
writer.writerow([event, "Event"])
for relation in all_relations:
writer.writerow([relation, "Relation"])
print("Data to CSV completed successfully.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help="[pes2o_abstract, en_simple_wiki_v0, cc_en]")
parser.add_argument("--data_dir", type=str, required=True, help="Directory containing the graph raw JSON files")
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the output CSV files")
parser.add_argument("--test", action="store_true", help="Test the script")
args = parser.parse_args()
json2csv(dataset=args.dataset, data_dir=args.data_dir, output_dir=args.output_dir, test=args.test)

View File

@ -0,0 +1,169 @@
import networkx as nx
import json
from tqdm import tqdm
import os
import hashlib
def get_node_id(entity_name, entity_to_id):
"""Returns existing or creates new nX ID for an entity using a hash-based approach."""
if entity_name not in entity_to_id:
# Use a hash function to generate a unique ID
hash_object = hashlib.md5(entity_name.encode()) # Use MD5 or another hashing algorithm
hash_hex = hash_object.hexdigest() # Get the hexadecimal representation of the hash
# Use the first 8 characters of the hash as the ID (you can adjust the length as needed)
entity_to_id[entity_name] = f'n{hash_hex[:16]}'
return entity_to_id[entity_name]
def clean_text(text):
# remove NUL as well
new_text = text.replace("\n", " ").replace("\r", " ").replace("\t", " ").replace("\v", " ").replace("\f", " ").replace("\b", " ").replace("\a", " ").replace("\e", " ").replace(";", ",")
new_text = new_text.replace("\x00", "")
return new_text
def process_kg_data(input_passage_dir, input_triple_dir, output_dir, keyword):
# Get file names containing the keyword
file_names = [file for file in list(os.listdir(input_triple_dir)) if keyword in file]
print(f"Keyword: {keyword}")
print(f"Number of files: {len(file_names)}")
print(file_names)
passage_file_names = [file for file in list(os.listdir(input_passage_dir)) if keyword in file]
print(f'Passage file names: {passage_file_names}')
g = nx.DiGraph()
print("Graph created.")
entity_to_id = {}
# check if output directory exists, if not create it
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"Output directory {output_dir} created.")
output_path = f"{output_dir}/{keyword}_kg_from_corpus.graphml"
# Create the original_text to node_id dictionary and add passage node to the graph
with open(f"{input_passage_dir}/{passage_file_names[0]}") as f:
data = json.load(f)
for item in tqdm(data, desc="Processing passages"):
passage_id = item["id"]
passage_text = item["text"]
node_id = get_node_id(passage_text, entity_to_id)
if passage_text.isspace() or len(passage_text) == 0:
continue
# Add the passage node to the graph
g.add_node(node_id, type="passage", id=passage_text, file_id=passage_id)
for file_name in tqdm(file_names):
print(f"Processing {file_name}")
input_file_path = f"{input_triple_dir}/{file_name}"
with open(input_file_path) as f:
for line in tqdm(f):
data = json.loads(line)
metadata = data["metadata"]
file_id = data["id"]
original_text = data["original_text"]
entity_relation_dict = data["entity_relation_dict"]
event_entity_relation_dict = data["event_entity_relation_dict"]
event_relation_dict = data["event_relation_dict"]
# Process entity triples
entity_triples = []
for entity_triple in entity_relation_dict:
if not all(key in entity_triple for key in ["Head", "Relation", "Tail"]):
continue
head_entity = clean_text(entity_triple["Head"])
relation = clean_text(entity_triple["Relation"])
tail_entity = clean_text(entity_triple["Tail"])
if head_entity.isspace() or len(head_entity) == 0 or tail_entity.isspace() or len(tail_entity) == 0:
continue
entity_triples.append((head_entity, relation, tail_entity))
# Add entity triples to the graph
for triple in entity_triples:
head_id = get_node_id(triple[0], entity_to_id)
tail_id = get_node_id(triple[2], entity_to_id)
g.add_node(head_id, type="entity", id=triple[0])
g.add_node(tail_id, type="entity", id=triple[2])
g.add_edge(head_id, get_node_id(original_text, entity_to_id), relation='mention in')
g.add_edge(tail_id, get_node_id(original_text, entity_to_id), relation='mention in')
g.add_edge(head_id, tail_id, relation=triple[1])
for node_id in [head_id, tail_id]:
if "file_id" not in g.nodes[node_id]:
g.nodes[node_id]["file_id"] = str(file_id)
else:
g.nodes[node_id]["file_id"] += "," + str(file_id)
edge = g.edges[head_id, tail_id]
if "file_id" not in edge:
edge["file_id"] = str(file_id)
else:
edge["file_id"] += "," + str(file_id)
# Process event triples
event_triples = []
for event_triple in event_relation_dict:
if not all(key in event_triple for key in ["Head", "Relation", "Tail"]):
continue
head_event = clean_text(event_triple["Head"])
relation = clean_text(event_triple["Relation"])
tail_event = clean_text(event_triple["Tail"])
if head_event.isspace() or len(head_event) == 0 or tail_event.isspace() or len(tail_event) == 0:
continue
event_triples.append((head_event, relation, tail_event))
# Add event triples to the graph
for triple in event_triples:
head_id = get_node_id(triple[0], entity_to_id)
tail_id = get_node_id(triple[2], entity_to_id)
g.add_node(head_id, type="event", id=triple[0])
g.add_node(tail_id, type="event", id=triple[2])
g.add_edge(head_id, get_node_id(original_text, entity_to_id), relation='mention in')
g.add_edge(tail_id, get_node_id(original_text, entity_to_id), relation='mention in')
g.add_edge(head_id, tail_id, relation=triple[1])
for node_id in [head_id, tail_id]:
if "file_id" not in g.nodes[node_id]:
g.nodes[node_id]["file_id"] = str(file_id)
else:
g.nodes[node_id]["file_id"] += "," + str(file_id)
edge = g.edges[head_id, tail_id]
if "file_id" not in edge:
edge["file_id"] = str(file_id)
else:
edge["file_id"] += "," + str(file_id)
# Process event-entity triples
event_entity_triples = []
for event_entity_participations in event_entity_relation_dict:
if not all(key in event_entity_participations for key in ["Event", "Entity"]):
continue
event = clean_text(event_entity_participations["Event"])
if event.isspace() or len(event) == 0:
continue
for entity in event_entity_participations["Entity"]:
if not isinstance(entity, str) or entity.isspace() or len(entity) == 0:
continue
entity = clean_text(entity)
event_entity_triples.append((event, "is participated by", entity))
# Add event-entity triples to the graph
for triple in event_entity_triples:
head_id = get_node_id(triple[0], entity_to_id)
tail_id = get_node_id(triple[2], entity_to_id)
g.add_node(head_id, type="event", id=triple[0])
g.add_node(tail_id, type="entity", id=triple[2])
g.add_edge(head_id, tail_id, relation=triple[1])
for node_id in [head_id, tail_id]:
if "file_id" not in g.nodes[node_id]:
g.nodes[node_id]["file_id"] = str(file_id)
edge = g.edges[head_id, tail_id]
if "file_id" not in edge:
edge["file_id"] = str(file_id)
else:
edge["file_id"] += "," + str(file_id)
print(f"Number of nodes: {g.number_of_nodes()}")
print(f"Number of edges: {g.number_of_edges()}")
print(f"Graph density: {nx.density(g)}")
with open(output_path, 'wb') as f:
nx.write_graphml(g, f, infer_numeric_types=True)