{ "query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?", "answer": "数据研发运营一体化(DataOps)是数据开发领域的一种新范式,它将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。这种范式强调数据管理的自动化,旨在提高数据产品交付效率与质量,实现高质量的数字化发展。DataOps通过以下方式实现数据开发流程的优化与协同:\n\n1. **构建自动化数据流水线**:整合数据开发、治理和运营环节,实现数据流程的自动化,提高效率和协同性。\n2. **敏捷、精益理念融入**:借鉴敏捷开发和精益管理的思想,灵活应对变化,持续优化流程,确保快速响应市场需求。\n3. **打破协作壁垒**:促进业务部门与数据部门之间的紧密合作,消除信息孤岛,提升整体协同效率。\n4. **提高数据服务开发效率**:通过自动化工具和流程优化,缩短数据服务的开发周期,提升交付速度。\n5. **强化数据生态系统建设**:鼓励数据开放共享,构建健康有序的数据市场环境,为企业提供更好的数据流通服务。\n\nDataOps实践过程中存在一些典型误区,例如:\n- **盲目跟风**:忽视企业自身的实际情况,简单模仿其他企业的做法。\n- **决策机制模糊**:资源分配不当,高层参与度不足,导致项目实施周期长、成本高。\n- **过度依赖技术**:过分依赖技术解决方案而忽视组织流程、管理、协作和数据文化的改进。\n- **追求短期收益**:缺乏长远规划,忽视数据质量提升的长期价值。\n\n为了克服这些误区,企业应采取以下解决思路:\n- **量体裁衣**:根据自身需求、痛点和技术架构制定实施策略。\n- **明确责任**:界定各部门和个人的角色和职责,建立有效的沟通反馈机制。\n- **流程规范化**:构建标准化的工作流程,减少决策混乱。\n- **培养数据文化**:提高员工对DataOps的认知和参与度,促进组织变革。\n- **业务导向**:围绕业务目标推进组织、流程和技术的变革。\n- **长期视角**:平衡短期收益与长期战略,确保DataOps实施的持续性。\n\n综上所述,DataOps在数据开发领域是一种集敏捷、精益理念于一体的范式,通过构建自动化数据流水线、优化协作机制和强化数据生态系统建设,实现数据开发流程的高效协同与质量提升。", "query_complexity": { "is_complex": true, "complexity_level": "complex", "confidence": 0.95, "reason": "这是一个复杂查询,需要生成多方面的个子查询来回答。首先,需要解释数据研发运营一体化(DataOps)的概念,然后理解数据开发的不同范式,最后对比和分析DataOps在这些范式中的定位和作用。这涉及到对数据管理和开发流程的理解,以及不同范式之间的区别和联系。" }, "is_complex_query": true, "retrieval_path": "complex_hipporag", "iterations": 0, "total_passages": 19, "sub_queries": [ "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?" ], "decomposed_sub_queries": [ "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?" ], "initial_retrieval_details": {}, "sufficiency_check": { "is_sufficient": true, "confidence": 0.9, "reason": "事件信息和段落信息包含了回答查询所需的关键内容...", "iteration": 0 }, "current_sub_queries": [], "is_sufficient": true, "all_documents": [ { "page_content": "将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。", "metadata": { "node_id": "f81ab568ce6cfce72175a1087db911f899752c622460211efdc350d6c3167149", "node_type": "event", "ppr_score": 0.012892635597429675, "edge_score": 0.0, "passage_score": 0.0, "rank": 1, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "数据研发运营一体化(DataOps)是数据开发的新范式,将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据产品交付效率与质量,实现高质量数字化发展。", "metadata": { "node_id": "774a6133f9a25821d10ebab0d1745ac30d14a4016da4d3548b102f265e633a22", "node_type": "event", "ppr_score": 0.012802360526298363, "edge_score": 0.0, "passage_score": 0.0, "rank": 2, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。", "metadata": { "node_id": "5be46591a0a7ccd7266c2f0961280fd5df89d16e316f123585ebe001f09c5fe1", "node_type": "event", "ppr_score": 0.0056418309732725646, "edge_score": 0.0, "passage_score": 0.0, "rank": 3, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "加强数据生态系统的建设,鼓励实现数据开放共享。", "metadata": { "node_id": "cdc6337c8984c01a1379d9afa19eeb4ba81660be38053a846e0f250baf04ee62", "node_type": "event", "ppr_score": 0.004432298343659114, "edge_score": 0.0, "passage_score": 0.0, "rank": 4, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。", "metadata": { "node_id": "f8d46e99bb67396a63859ea3eafb0dd619b62f57c9337d2e223051e0d4f9a200", "node_type": "event", "ppr_score": 0.004270621110152425, "edge_score": 0.0, "passage_score": 0.0, "rank": 5, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "“数据二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "metadata": { "node_id": "90d9024251e5a8cdeca241f0c6166214b4243126f3384975deec9474b31cf45a", "node_type": "event", "ppr_score": 0.004185603347351533, "edge_score": 0.0, "passage_score": 0.0, "rank": 6, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "“数据二十条”的提出", "metadata": { "node_id": "327e8729397c50b72a02a2e0b4edbb84c4d8ef516d62def1987f0d2c5b0a13c7", "node_type": "event", "ppr_score": 0.0029358892214702568, "edge_score": 0.0, "passage_score": 0.0, "rank": 7, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "metadata": { "node_id": "e38d3e0e4674b563982bcd5cd1ec26a0b1ca3f132d337daa172449acae175c0d", "node_type": "event", "ppr_score": 0.0029358892214702568, "edge_score": 0.0, "passage_score": 0.0, "rank": 8, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "随着数据要素流通政策的不断完善,要素市场的健康有序发展", "metadata": { "node_id": "d5ee55564eb846724ff58c21d820cd8a707a3aa64993c6fb3ceb062f52fddc05", "node_type": "event", "ppr_score": 0.0029358892214702568, "edge_score": 0.0, "passage_score": 0.0, "rank": 9, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "企业开展数据流通服务创造了良好的环境。", "metadata": { "node_id": "1f50d1daccca477b7b1e644e4eb617d9316bb954774db3d5dd038e306e1a6e5a", "node_type": "event", "ppr_score": 0.0029358892214702568, "edge_score": 0.0, "passage_score": 0.0, "rank": 10, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化(DataOps)是数据开发的新范式,将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量,实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。", "metadata": { "node_id": "da7aaabf868de83a9fc286404d784e30982b7ba7a5e56c5c1707922e5e39dcf1", "node_type": "text", "ppr_score": 0.0871338169164359, "edge_score": 0.0, "passage_score": 0.08153599, "rank": 11, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1:盲目跟风,没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2:决策机制模糊,导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3:过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4:追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向", "metadata": { "node_id": "9c60e1d67a9be847f2b2e95f859a18bf9940b7854a020b276d921f9caa0bc7a6", "node_type": "text", "ppr_score": 0.006851807334114405, "edge_score": 0.0, "passage_score": 0.08695019500000001, "rank": 12, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。AI技术可以通过机器学习和深度学习算 法,自动化地处理和分析大规模的数据,发现数据中的隐藏模式和趋势,为企业提供 更准确、实时的决策支持。数据分析技术也将不断发展,包括数据挖掘、预测分析、 文本分析等,通过对数据的深入分析,帮助企业更好地理解和利用数据。 ## (五)以数据入表为抓手,探索数据核算机制 2023年8月,财政部正式发文《企业数据资源相关会计处理暂行规定》(下称 “暂行规定”),标志着我国数据资源入表正式落地,探索数据资源入表的基础制度和 会计制度,对于释放数据要素价值、推动市场建设、优化资源配置具有重要意义。数 据资源入表是指将企业数据资源在财务报表层面真实反应其价值和成本投入,向企业 董事会、管理层和投资方充分披露公司对于数据的重视程度和数据带来的实际价值。 《暂行规定》根据企业使用数据目的的不同,区分为无形资产类数据资产和存 货类数据资产,并分别要求企业参照《企业会计准则第6号——无形资产》和《企业 会计准则第1号——存货》进行处理,同时也要求企业按照规定强制和自愿披露相关 数据资源信息。在《暂行规定》的指导要求下,企业过往在数据建设领域的部分投资 费用可以得到资本化处理,进而改善企业资产负债结构、经营利润等财务数据,同 时,也会进一步激发、促进企业加速完善数据管理体系的建设意愿与进程。", "metadata": { "node_id": "114fe591e33e8bff142be610475d8035339e334932dc35fd2e89ff078d10fe52", "node_type": "text", "ppr_score": 0.004634794914143682, "edge_score": 0.0, "passage_score": 0.084014775, "rank": 13, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)在数据开发领域属于哪种范式?", "pagerank_available": true } }, { "page_content": "DataOps能力模型围绕数据开发流程形成了‘4+3’的架构", "metadata": { "node_id": "6fb21443024d2f95c26d6a0a300a5599a1c9804f500f70fec83d3cb60afdc87a", "node_type": "event", "ppr_score": 0.0040612686101705155, "edge_score": 0.0, "passage_score": 0.0, "rank": 3, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?", "pagerank_available": true } }, { "page_content": "中国工商银行实施了 DataOps 敏捷数据生产与创新体系,研发效率提高了 50%,测试数据准备效率提高了 10 倍。", "metadata": { "node_id": "54df2597aae99ae4abc5dd69827c1fa33076286420621cd0ec9c2e5cff1bc682", "node_type": "event", "ppr_score": 0.0025886503251164135, "edge_score": 0.0, "passage_score": 0.0, "rank": 5, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?", "pagerank_available": true } }, { "page_content": "华为终端、浙江移动、中国农业银行、江苏移动等企业构建了跨职能团队、专职组织或设立了专职人员来促进业务部门与数据部门的紧密合作。", "metadata": { "node_id": "f28343612362bd4309f0461469c98665ea8242c1bfec8ebceb97bab7b4040d68", "node_type": "event", "ppr_score": 0.0022869815320504926, "edge_score": 0.0, "passage_score": 0.0, "rank": 6, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?", "pagerank_available": true } }, { "page_content": "形成‘先设计、后开发、先标准、后建模’的数据治理模式,中国工商银行实施了大数据质量门禁,包括大数据代码规范扫描、单元测试覆盖、UTTD。", "metadata": { "node_id": "daccb4f23c08a4ef8394f257711df0715723916de3c3e8baebe68b0b8705a18c", "node_type": "event", "ppr_score": 0.0021764911936715432, "edge_score": 0.0, "passage_score": 0.0, "rank": 7, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?", "pagerank_available": true } }, { "page_content": "某大型互联网企业普及了自动化测试平台,包括集成自动化风险标记、自动化测试用例转监控等功能。", "metadata": { "node_id": "38d6f7019df68656457904d0da88bce501f071a71b45fe6458eb1bdb13c1efc6", "node_type": "event", "ppr_score": 0.002148133460212453, "edge_score": 0.0, "passage_score": 0.0, "rank": 8, "source": "hipporag2_langchain_event", "query": "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?", "pagerank_available": true } }, { "page_content": "# DataOps 实践初探\\n\\n越来越多的企业开始意识到数据作为核心资产的价值,着力于通过 DataOps 改善数据开发流程,提升数据质量,加速数据流动,并促进数据在产品开发和消费端的高效利用。通过工作组的广泛调研,**将头部企业典型的实践与发展趋势**总结如下,希望为行业提供可取的建设思路。\\n\\n## 01 敏捷数据开发取得稳健成效 先行企业特征各异\\n\\n| 头部企业从 2020 年开始 DataOps 实践: | 先行企业的切入模式 |\\n\\n| :------------------------------------ | :------------------ |\\n\\n| - 中国工商银行:DataOps 敏捷数据生产与创新体系,研发效率 +50%,测试数据准备效率 +10 倍 | 战略驱动 |\\n\\n| - 浙江移动:敏捷数据产品,1.7 亿多源异构地址数据的统一建模 | 需求驱动 |\\n\\n| | 技术驱动 |\\n\\n## 03 组织变革促进协同机制构建 业数合作更加紧密\\n\\n### 技术变革与组织变革双向互馈\\n\\n新的挑战和机会\\n\\n高效利用数据资产和新技术的前提条件\\n\\n#### 技术变革\\n\\n#### 组织变革\\n\\n| 业务部门与数据部门结合更为紧密 | 跨职能团队 | 专职组织 | 专职人员 |\\n\\n| :------------------------------- | :--------- | :------- | :------- |\\n\\n| 华为终端:终端业务数据开发与治理联合工作组 | | | |\\n\\n| 浙江移动:跨域数据一致性治理工作小组 | | | |\\n\\n| 中国农业银行:DataOps 专职团队 | | | |\\n\\n| 江苏移动:数据质量专员 | | | |\\n\\n## 02 文化渗透促进数据深度应用 数据价值逐步释放\\n\\n- 建立良好的**企业数据文化**是向数据驱动型企业迈进的重要一步。\\n\\n### 培训\\n\\n#### 非数据技术人员\\n\\n#### 数据技术人员\\n\\n加强对**数据生产端的敏捷开发、自动化工具等方法和理念的宣贯**。\\n\\n加强对**数据消费端借助可视化工具进行自查询和数据理念的宣贯**。\\n\\n## 04 数据研发治理流程初步搭建 质量管控初见成效\\n\\n### 数据治理前置初见成效:\\n\\n- 形成“先设计、后开发、先标准、后建模”的模式\\n\\n- 中国工商银行 - 大数据质量门禁:大数据代码规范扫描,单元测试覆盖,UTTD\\n\\n### 数据自动化测试进一步普及:\\n\\n- 某大型互联网 - 自动化测试平台:集成自动化风险标记、自动化测试用例转监控等功能", "metadata": { "node_id": "4e3dfec2ed3a3eaee6d31861e83cd54d8ba47840cd36f43162c719fabe2ef048", "node_type": "text", "ppr_score": 0.036140827653451224, "edge_score": 0.0, "passage_score": 0.088856315, "rank": 12, "source": "hipporag2_langchain_text", "query": "数据研发运营一体化(DataOps)是如何实现数据开发流程的优化与协同的?", "pagerank_available": true } } ], "all_passages": [ "将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。", "数据研发运营一体化(DataOps)是数据开发的新范式,将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据产品交付效率与质量,实现高质量数字化发展。", "随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。", "加强数据生态系统的建设,鼓励实现数据开放共享。", "随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。", "“数据二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "“数据二十条”的提出", "健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和交易,有效推动数据资源的高效利用和流动。", "随着数据要素流通政策的不断完善,要素市场的健康有序发展", "企业开展数据流通服务创造了良好的环境。", "## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化(DataOps)是数据开发的新范式,将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量,实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。", "# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1:盲目跟风,没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2:决策机制模糊,导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3:过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4:追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向", "DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。AI技术可以通过机器学习和深度学习算 法,自动化地处理和分析大规模的数据,发现数据中的隐藏模式和趋势,为企业提供 更准确、实时的决策支持。数据分析技术也将不断发展,包括数据挖掘、预测分析、 文本分析等,通过对数据的深入分析,帮助企业更好地理解和利用数据。 ## (五)以数据入表为抓手,探索数据核算机制 2023年8月,财政部正式发文《企业数据资源相关会计处理暂行规定》(下称 “暂行规定”),标志着我国数据资源入表正式落地,探索数据资源入表的基础制度和 会计制度,对于释放数据要素价值、推动市场建设、优化资源配置具有重要意义。数 据资源入表是指将企业数据资源在财务报表层面真实反应其价值和成本投入,向企业 董事会、管理层和投资方充分披露公司对于数据的重视程度和数据带来的实际价值。 《暂行规定》根据企业使用数据目的的不同,区分为无形资产类数据资产和存 货类数据资产,并分别要求企业参照《企业会计准则第6号——无形资产》和《企业 会计准则第1号——存货》进行处理,同时也要求企业按照规定强制和自愿披露相关 数据资源信息。在《暂行规定》的指导要求下,企业过往在数据建设领域的部分投资 费用可以得到资本化处理,进而改善企业资产负债结构、经营利润等财务数据,同 时,也会进一步激发、促进企业加速完善数据管理体系的建设意愿与进程。", "DataOps能力模型围绕数据开发流程形成了‘4+3’的架构", "中国工商银行实施了 DataOps 敏捷数据生产与创新体系,研发效率提高了 50%,测试数据准备效率提高了 10 倍。", "华为终端、浙江移动、中国农业银行、江苏移动等企业构建了跨职能团队、专职组织或设立了专职人员来促进业务部门与数据部门的紧密合作。", "形成‘先设计、后开发、先标准、后建模’的数据治理模式,中国工商银行实施了大数据质量门禁,包括大数据代码规范扫描、单元测试覆盖、UTTD。", "某大型互联网企业普及了自动化测试平台,包括集成自动化风险标记、自动化测试用例转监控等功能。", "# DataOps 实践初探\\n\\n越来越多的企业开始意识到数据作为核心资产的价值,着力于通过 DataOps 改善数据开发流程,提升数据质量,加速数据流动,并促进数据在产品开发和消费端的高效利用。通过工作组的广泛调研,**将头部企业典型的实践与发展趋势**总结如下,希望为行业提供可取的建设思路。\\n\\n## 01 敏捷数据开发取得稳健成效 先行企业特征各异\\n\\n| 头部企业从 2020 年开始 DataOps 实践: | 先行企业的切入模式 |\\n\\n| :------------------------------------ | :------------------ |\\n\\n| - 中国工商银行:DataOps 敏捷数据生产与创新体系,研发效率 +50%,测试数据准备效率 +10 倍 | 战略驱动 |\\n\\n| - 浙江移动:敏捷数据产品,1.7 亿多源异构地址数据的统一建模 | 需求驱动 |\\n\\n| | 技术驱动 |\\n\\n## 03 组织变革促进协同机制构建 业数合作更加紧密\\n\\n### 技术变革与组织变革双向互馈\\n\\n新的挑战和机会\\n\\n高效利用数据资产和新技术的前提条件\\n\\n#### 技术变革\\n\\n#### 组织变革\\n\\n| 业务部门与数据部门结合更为紧密 | 跨职能团队 | 专职组织 | 专职人员 |\\n\\n| :------------------------------- | :--------- | :------- | :------- |\\n\\n| 华为终端:终端业务数据开发与治理联合工作组 | | | |\\n\\n| 浙江移动:跨域数据一致性治理工作小组 | | | |\\n\\n| 中国农业银行:DataOps 专职团队 | | | |\\n\\n| 江苏移动:数据质量专员 | | | |\\n\\n## 02 文化渗透促进数据深度应用 数据价值逐步释放\\n\\n- 建立良好的**企业数据文化**是向数据驱动型企业迈进的重要一步。\\n\\n### 培训\\n\\n#### 非数据技术人员\\n\\n#### 数据技术人员\\n\\n加强对**数据生产端的敏捷开发、自动化工具等方法和理念的宣贯**。\\n\\n加强对**数据消费端借助可视化工具进行自查询和数据理念的宣贯**。\\n\\n## 04 数据研发治理流程初步搭建 质量管控初见成效\\n\\n### 数据治理前置初见成效:\\n\\n- 形成“先设计、后开发、先标准、后建模”的模式\\n\\n- 中国工商银行 - 大数据质量门禁:大数据代码规范扫描,单元测试覆盖,UTTD\\n\\n### 数据自动化测试进一步普及:\\n\\n- 某大型互联网 - 自动化测试平台:集成自动化风险标记、自动化测试用例转监控等功能" ], "passage_sources": [ "子查询1-event-f81ab568ce6cfce72175a1087db911f899752c622460211efdc350d6c3167149", "子查询1-event-774a6133f9a25821d10ebab0d1745ac30d14a4016da4d3548b102f265e633a22", "子查询1-event-5be46591a0a7ccd7266c2f0961280fd5df89d16e316f123585ebe001f09c5fe1", "子查询1-event-cdc6337c8984c01a1379d9afa19eeb4ba81660be38053a846e0f250baf04ee62", "子查询1-event-f8d46e99bb67396a63859ea3eafb0dd619b62f57c9337d2e223051e0d4f9a200", "子查询1-event-90d9024251e5a8cdeca241f0c6166214b4243126f3384975deec9474b31cf45a", "子查询1-event-327e8729397c50b72a02a2e0b4edbb84c4d8ef516d62def1987f0d2c5b0a13c7", "子查询1-event-e38d3e0e4674b563982bcd5cd1ec26a0b1ca3f132d337daa172449acae175c0d", "子查询1-event-d5ee55564eb846724ff58c21d820cd8a707a3aa64993c6fb3ceb062f52fddc05", "子查询1-event-1f50d1daccca477b7b1e644e4eb617d9316bb954774db3d5dd038e306e1a6e5a", "子查询1-text-da7aaabf868de83a9fc286404d784e30982b7ba7a5e56c5c1707922e5e39dcf1", "子查询1-text-9c60e1d67a9be847f2b2e95f859a18bf9940b7854a020b276d921f9caa0bc7a6", "子查询1-text-114fe591e33e8bff142be610475d8035339e334932dc35fd2e89ff078d10fe52", "子查询2-event-6fb21443024d2f95c26d6a0a300a5599a1c9804f500f70fec83d3cb60afdc87a", "子查询2-event-54df2597aae99ae4abc5dd69827c1fa33076286420621cd0ec9c2e5cff1bc682", "子查询2-event-f28343612362bd4309f0461469c98665ea8242c1bfec8ebceb97bab7b4040d68", "子查询2-event-daccb4f23c08a4ef8394f257711df0715723916de3c3e8baebe68b0b8705a18c", "子查询2-event-38d6f7019df68656457904d0da88bce501f071a71b45fe6458eb1bdb13c1efc6", "子查询2-text-4e3dfec2ed3a3eaee6d31861e83cd54d8ba47840cd36f43162c719fabe2ef048" ], "pagerank_data_available": true, "pagerank_summary": {}, "concept_exploration_results": {}, "exploration_round": 0, "debug_info": { "total_time": 24.503965854644775, "retrieval_calls": 1, "llm_calls": 4, "langsmith_project": "hipporag-retriever", "token_usage_summary": { "has_llm": true, "has_generator": true, "last_call": { "prompt_tokens": 2749, "completion_tokens": 497, "total_tokens": 3246 }, "total_usage": { "prompt_tokens": 22014, "completion_tokens": 2621, "total_tokens": 24635, "call_count": 16 }, "model_name": "qwen2-7b-instruct", "has_last_usage": true, "has_total_usage": true }, "complexity_analysis": { "is_complex": true, "complexity_level": "complex", "confidence": 0.95, "reason": "这是一个复杂查询,需要生成多方面的个子查询来回答。首先,需要解释数据研发运营一体化(DataOps)的概念,然后理解数据开发的不同范式,最后对比和分析DataOps在这些范式中的定位和作用。这涉及到对数据管理和开发流程的理解,以及不同范式之间的区别和联系。" }, "debug_mode_analysis": { "debug_mode": "0", "debug_override": {}, "path_override_applied": false }, "sufficiency_analysis": { "final_sufficiency": true, "sufficiency_check_details": { "is_sufficient": true, "confidence": 0.9, "reason": "事件信息和段落信息包含了回答查询所需的关键内容...", "iteration": 0 }, "iteration_sufficiency_history": [], "sufficiency_progression": { "status": "no_sufficiency_checks" } }, "routing_analysis": { "total_routing_decisions": 1, "sub_query_generation_count": 0, "parallel_retrieval_count": 0, "pagerank_collection_count": 0 }, "concept_exploration_analysis": { "exploration_enabled": false, "exploration_rounds": 0, "pagerank_nodes_analyzed": 0, "successful_branches_total": 0, "total_branches_attempted": 0 } }, "iteration_history": [ { "iteration": 0, "query": "并行检索: 原始查询 + 2 个子查询", "passages_count": 19, "action": "retrieval" }, { "iteration": 0, "action": "sufficiency_check", "is_sufficient": true, "confidence": 0.9, "sub_queries_count": 0 }, { "iteration": 0, "action": "final_answer_generation", "answer_length": 938 } ] }