Files
AIEC-new/AIEC-RAG/retriver/langsmith/json_langsmith/langsmith_full_20250916_204027.json
2025-10-17 09:31:28 +08:00

282 lines
35 KiB
JSON
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"answer": "根据检索到的信息,我们可以回答用户的原始查询以及生成的子查询:\n\n### 用户原始查询:数据研发运营一体化(DataOps)是数据开发的哪种范式?\n\n**答案:**数据研发运营一体化DataOps是一种新的数据开发范式它将敏捷、精益等理念融入数据开发过程打破了协作壁垒构建了一个集开发、治理、运营于一体的自动化数据流水线。这种模式通过自动化手段提高数据产品交付的效率和质量从而实现高质量的数字化发展。DataOps的核心在于通过流程优化、工具整合以及跨团队协作确保数据开发、管理和运营的无缝对接以此提高数据服务的交付速度和质量。\n\n### 子查询解答:\n\n#### 1. 数据研发运营一体化是数据开发的哪一种模式?\n\n**答案:**如上所述数据研发运营一体化DataOps是一种新的数据开发模式它融合了敏捷、精益等现代开发实践旨在提高数据开发、治理和运营的效率与质量。通过构建自动化数据流水线DataOps模式能够简化协作流程加速数据产品的交付同时确保数据的质量和安全性。\n\n#### 2. 数据研发运营一体化的核心理念是什么?\n\n**答案:**数据研发运营一体化的核心理念主要包括以下几个方面:\n- **敏捷性**:强调快速响应和迭代改进,通过敏捷开发方法提高开发效率。\n- **精益原则**:追求最大化价值交付,消除浪费,优化资源分配。\n- **协作与沟通**:促进跨部门之间的紧密合作,打破传统孤岛式的开发模式。\n- **自动化**:通过自动化工具和流程来提高效率,减少人为错误。\n- **数据治理与质量**:确保数据的一致性、质量和安全性,支撑数据驱动的决策。\n- **持续改进**:通过持续监控和反馈循环,不断优化数据开发流程和产出。\n\n通过这些理念的实施DataOps模式不仅提升了数据开发的效率和质量还促进了数据在整个组织内的流通和价值最大化是企业数字化转型中不可或缺的一部分。",
"query_complexity": {
"is_complex": true,
"complexity_level": "complex",
"confidence": 0.95,
"reason": "这是一个复杂查询,因为用户询问的是数据研发运营一体化(DataOps)与数据开发的特定范式之间的关系。这可能涉及到对DataOps实践的理解、数据开发的不同范式以及两者之间的联系的深入分析。这种类型的问题通常需要从多个角度和来源收集信息并可能涉及一些推理来确定准确的答案。因此可能需要生成多个子查询来全面解答。"
},
"is_complex_query": true,
"retrieval_path": "complex_hipporag",
"iterations": 0,
"total_passages": 10,
"sub_queries": [
"数据研发运营一体化是数据开发的哪一种模式?",
"数据研发运营一体化的核心理念是什么?"
],
"decomposed_sub_queries": [
"数据研发运营一体化是数据开发的哪一种模式?",
"数据研发运营一体化的核心理念是什么?"
],
"initial_retrieval_details": {},
"sufficiency_check": {
"is_sufficient": true,
"confidence": 0.9,
"reason": "事件信息和段落信息包含了回答查询所需的关键内容其中事件信息明确指出数据研发运营一体化DataOps是数据开发的新范式将敏捷、精益等理念融入数据开发过程打破协作壁垒构建集开发、治理、运营于一体的自动化数据流水线。段落信息进一步解释了DataOps的概念、实践误区以及解决思路从而完整地回答了用户关于DataOps是数据开发哪种范式的问题。",
"iteration": 0
},
"current_sub_queries": [],
"is_sufficient": true,
"all_documents": [
{
"page_content": "将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。",
"metadata": {
"node_id": "f81ab568ce6cfce72175a1087db911f899752c622460211efdc350d6c3167149",
"node_type": "event",
"ppr_score": 0.01983924497228199,
"edge_score": 0.0,
"passage_score": 0.0,
"rank": 1,
"source": "hipporag2_langchain_event",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "数据研发运营一体化DataOps是数据开发的新范式将敏捷、精益等理念融入数据开发过程打破协作壁垒构建集开发、治理、运营于一体的自动化数据流水线不断提高数据产品交付效率与质量实现高质量数字化发展。",
"metadata": {
"node_id": "774a6133f9a25821d10ebab0d1745ac30d14a4016da4d3548b102f265e633a22",
"node_type": "event",
"ppr_score": 0.019597169475437017,
"edge_score": 0.0,
"passage_score": 0.0,
"rank": 2,
"source": "hipporag2_langchain_event",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。",
"metadata": {
"node_id": "5be46591a0a7ccd7266c2f0961280fd5df89d16e316f123585ebe001f09c5fe1",
"node_type": "event",
"ppr_score": 0.0061531160680761785,
"edge_score": 0.0,
"passage_score": 0.0,
"rank": 3,
"source": "hipporag2_langchain_event",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "加强数据生态系统的建设,鼓励实现数据开放共享。",
"metadata": {
"node_id": "cdc6337c8984c01a1379d9afa19eeb4ba81660be38053a846e0f250baf04ee62",
"node_type": "event",
"ppr_score": 0.004859945028094092,
"edge_score": 0.0,
"passage_score": 0.0,
"rank": 4,
"source": "hipporag2_langchain_event",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。",
"metadata": {
"node_id": "f8d46e99bb67396a63859ea3eafb0dd619b62f57c9337d2e223051e0d4f9a200",
"node_type": "event",
"ppr_score": 0.0046708226354516295,
"edge_score": 0.0,
"passage_score": 0.0,
"rank": 5,
"source": "hipporag2_langchain_event",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化DataOps是数据开发的新范式将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。",
"metadata": {
"node_id": "da7aaabf868de83a9fc286404d784e30982b7ba7a5e56c5c1707922e5e39dcf1",
"node_type": "text",
"ppr_score": 0.11130025849621455,
"edge_score": 0.0,
"passage_score": 0.1995981152,
"rank": 6,
"source": "hipporag2_langchain_text",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1盲目跟风没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2决策机制模糊导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向",
"metadata": {
"node_id": "9c60e1d67a9be847f2b2e95f859a18bf9940b7854a020b276d921f9caa0bc7a6",
"node_type": "text",
"ppr_score": 0.011833282203203833,
"edge_score": 0.0,
"passage_score": 0.2111233047,
"rank": 7,
"source": "hipporag2_langchain_text",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "# DataOps 实践初探\\n\\n越来越多的企业开始意识到数据作为核心资产的价值着力于通过 DataOps 改善数据开发流程,提升数据质量,加速数据流动,并促进数据在产品开发和消费端的高效利用。通过工作组的广泛调研,**将头部企业典型的实践与发展趋势**总结如下,希望为行业提供可取的建设思路。\\n\\n## 01 敏捷数据开发取得稳健成效 先行企业特征各异\\n\\n| 头部企业从 2020 年开始 DataOps 实践: | 先行企业的切入模式 |\\n\\n| :------------------------------------ | :------------------ |\\n\\n| - 中国工商银行DataOps 敏捷数据生产与创新体系,研发效率 +50%,测试数据准备效率 +10 倍 | 战略驱动 |\\n\\n| - 浙江移动敏捷数据产品1.7 亿多源异构地址数据的统一建模 | 需求驱动 |\\n\\n| | 技术驱动 |\\n\\n## 03 组织变革促进协同机制构建 业数合作更加紧密\\n\\n### 技术变革与组织变革双向互馈\\n\\n新的挑战和机会\\n\\n高效利用数据资产和新技术的前提条件\\n\\n#### 技术变革\\n\\n#### 组织变革\\n\\n| 业务部门与数据部门结合更为紧密 | 跨职能团队 | 专职组织 | 专职人员 |\\n\\n| :------------------------------- | :--------- | :------- | :------- |\\n\\n| 华为终端:终端业务数据开发与治理联合工作组 | | | |\\n\\n| 浙江移动:跨域数据一致性治理工作小组 | | | |\\n\\n| 中国农业银行DataOps 专职团队 | | | |\\n\\n| 江苏移动:数据质量专员 | | | |\\n\\n## 02 文化渗透促进数据深度应用 数据价值逐步释放\\n\\n- 建立良好的**企业数据文化**是向数据驱动型企业迈进的重要一步。\\n\\n### 培训\\n\\n#### 非数据技术人员\\n\\n#### 数据技术人员\\n\\n加强对**数据生产端的敏捷开发、自动化工具等方法和理念的宣贯**。\\n\\n加强对**数据消费端借助可视化工具进行自查询和数据理念的宣贯**。\\n\\n## 04 数据研发治理流程初步搭建 质量管控初见成效\\n\\n### 数据治理前置初见成效:\\n\\n- 形成“先设计、后开发、先标准、后建模”的模式\\n\\n- 中国工商银行 - 大数据质量门禁大数据代码规范扫描单元测试覆盖UTTD\\n\\n### 数据自动化测试进一步普及:\\n\\n- 某大型互联网 - 自动化测试平台:集成自动化风险标记、自动化测试用例转监控等功能",
"metadata": {
"node_id": "4e3dfec2ed3a3eaee6d31861e83cd54d8ba47840cd36f43162c719fabe2ef048",
"node_type": "text",
"ppr_score": 0.01032721396551583,
"edge_score": 0.0,
"passage_score": 0.21332163269999999,
"rank": 8,
"source": "hipporag2_langchain_text",
"query": "数据研发运营一体化(DataOps)是数据开发的哪种范式?",
"pagerank_available": true
}
},
{
"page_content": "# 业数融合不断深化,逐步由机构高层扩展到全域\\n\\n中国·北京 12.20-12.21 回归数据本质 应用驱动治理\\n\\n2023数据资产管理大会\\n\\n数据应用同业务融合的趋势显著服务对象逐步由机构高层向机构全域转变**普惠化、场景化、智能化**进程加速。\\n\\n### 服务高层\\n\\n* 依托专业的数据分析师、数据科学家\\n\\n* 用于企业高层的战略决策,周期较长\\n\\n* 采用专业化的数据分析工具,工具同业务流程分离\\n\\n#### 主要形式:\\n\\n![业务报表](image_1.png) 业务报表 ![驾驶舱](image_2.png) 驾驶舱\\n\\n### 服务全域\\n\\n* 专业、深度的数据分析同低门槛自助分析结合\\n\\n* 轻量快速的决策中数据分析渗透率在不断提高\\n\\n* 数据分析工具逐步嵌入业务流程中\\n\\n#### 主要形式:\\n\\n![业务报表](image_3.png) 业务报表 ![驾驶舱](image_4.png) 驾驶舱 ![自助式BI](image_5.png) 自助式BI ![移动端看板](image_6.png) 移动端看板 ![AI助手](image_7.png) AI助手\\n\\n![统一数据分析平台](image_8.png)\\n\\n![统一数据分析平台](image_9.png)\\n\\n参考《数据分析应用能力分级要求》标准",
"metadata": {
"node_id": "bfb55ff2c7c3ab9d1839b1a9b5e75e706bdb2f0ebab747e9dc22168e15da5b9c",
"node_type": "text",
"ppr_score": 0.00891069427471404,
"edge_score": 0.0,
"passage_score": 0.2018919848,
"rank": 8,
"source": "hipporag2_langchain_text",
"query": "数据研发运营一体化是数据开发的哪一种模式?",
"pagerank_available": true
}
},
{
"page_content": "# DataOps 能力框架——实践保障\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了保证 DataOps 研发流水线能够持续高效运转和迭代完善,企业需要有力的保障措施。本指南提出了组织、工具和安全三个维度的保障要求。这些要求的目标是引导企业以全局最优为目标,保障数据研发流水线的平滑运作。\\n\\n### 系统工具\\n\\n#### 数据需求管理\\n\\n| 手段 | 构建数据需求全生命周期的管理能力 |\\n\\n| :--- | :--------------------------------- |\\n\\n| 目标 | 支持流程的设计和共享 |\\n\\n| 进一步要求 | 数据需求方主动通过自助分析平台进行数据探查 |\\n\\n#### 数据研发治理一体化\\n\\n| 原则 | 先设计、后开发、先标准、后建模 |\\n\\n| :--- | :------------------------------- |\\n\\n| 手段 | 设计管理、开发管理、数据应用 |\\n\\n| 目的 | 规范即设计,设计即开发,开发即治理 |\\n\\n#### 数据自动化交付部署\\n\\n![数据自动化交付部署流程图](image_1.png)\\n\\n#### 数据一体化运维\\n\\n| 对象 | 数据研发全链路的监测、运维监控、运维告警、运维操作 |\\n\\n| :--- | :---------------------------------------------------- |\\n\\n| 手段 | 可视化方式 |\\n\\n| 目的 | 实时展现研发效能、数据质量 |\\n\\n### 组织管理\\n\\n#### 组织架构\\n\\n合理配置\\n\\n{ | 数据技术架构 |\\n\\n| 数据人员架构 |\\n\\n#### 岗位角色\\n\\n| | 设置相应的岗位角色 |\\n\\n| :--- | :------------------ |\\n\\n| | 明确晋升路线与考核方式 |\\n\\n#### 协作协同\\n\\n依托\\n\\n| 敏捷方法 |\\n\\n| :-------- |\\n\\n| 关注团队、工具间的协同问题持续进行优化 |\\n\\n解决\\n\\n### 安全管控\\n\\n#### 安全风险策略\\n\\n加强\\n\\n{ | 数据研发全生命周期 |\\n\\n| 风险识别 |\\n\\n| 风险预测 |\\n\\n#### 风险管理\\n\\n外部法律法规\\n\\n+ 监管要求\\n\\n+ 企业内部安全需求\\n\\n健全\\n\\n风险管理策略\\n\\n#### 安全测试\\n\\n数据研发过程的各环节进行安全测试\\n\\n保证\\n\\n提前发现问题处理问题",
"metadata": {
"node_id": "21cecc0bf37f351e693eaf71192ada4887caa03f90c22fe314b582966d6ccc79",
"node_type": "text",
"ppr_score": 0.010312119996703076,
"edge_score": 0.0,
"passage_score": 0.2046459932,
"rank": 7,
"source": "hipporag2_langchain_text",
"query": "数据研发运营一体化的核心理念是什么?",
"pagerank_available": true
}
}
],
"all_passages": [
"将敏捷、精益等理念融入数据开发过程,打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线。",
"数据研发运营一体化DataOps是数据开发的新范式将敏捷、精益等理念融入数据开发过程打破协作壁垒构建集开发、治理、运营于一体的自动化数据流水线不断提高数据产品交付效率与质量实现高质量数字化发展。",
"随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务开发效率是关键。",
"加强数据生态系统的建设,鼓励实现数据开放共享。",
"随着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服务创造了良好的环境。",
"## (三)参与数据要素市场,获取数据竞争优势 加强数据生态系统的建设,鼓励实现数据开放共享。数据生态系统是一个以数 据为核心,由各种数据参与方(企业、组织、个人等)构成的复杂网络,涵盖数据的 生产、流通、利用等环节。通过构建数据生态系统,企业能够更好地进行数据合作与 共享,并参与生态系统的协同治理,推动数据的价值最大化。 加大数据内外部推广,丰富数据生态体系,积极参与数据要素市场建设。“数据 二十条”的提出旨在健全数据产权制度,建立数据流通交易制度,鼓励数据的共享和 交易,有效推动数据资源的高效利用和流动,为数字经济的发展创造良好的环境。随 着数据要素流通政策的不断完善,要素市场的健康有序发展,为企业开展数据流通服 务创造了良好的环境,越来越多的企业利用自身数据积累优势和服务能力优势,深入 调研数据需求方的核心业务痛点,形成可流通交易的数据产品,提供针对性的数据产 品与解决方案,推进形成各类数据产品的权责范围、供求关系、使用场景、定价策略 等,完善数据产品全流程合规管理,充分实现数据赋能发展。 ## (四)加深新型技术使用,提高数据运营效率 随着数据需求种类日益丰富,服务交付时效性重要性逐渐凸显,提升数据服务 开发效率是关键。数据研发运营一体化DataOps是数据开发的新范式将敏 捷、精益等理念融入数据开发过程,通过对数据相关人员、工具和流程的重新组织, 打破协作壁垒,构建集开发、治理、运营于一体的自动化数据流水线,不断提高数据 产品交付效率与质量实现高质量数字化发展。DataOps作为一种新兴的数据管理 方法,强调数据管理自动化,既能为数据工作者提供敏捷的数据开发支持,同时也简 化了数据交付的周期,提升数据成产者与数据消费者的协同效率,成为企业数字化转 型快速释放数据生产力的最佳方案。 充分利用AI和大模型技术优化数据策略。",
"# DataOps 实践典型误区\\n\\nDataOps 作为一种新的数据开发范式正在越来越多的行业和企业中落地,然而,能力建设并非一朝一夕,其实施过程中亦面临重重困难。\\n\\n为帮助即将或正在建设 DataOps 体系的企业进行“避雷”,我们将当前产业在实践过程中走过的弯路和遇到的问题进行了提炼。\\n\\n## 误区 1盲目跟风没有“量体裁衣”\\n\\n* **DataOps 理念过热期**\\n\\n+ 领头企业成功案例催化\\n\\n+ 忽略不同企业实施复杂性和差异性\\n\\n## 误区 2决策机制模糊导致资源浪费或投入不足\\n\\n* **投入不足**\\n\\n* DataOps 被视为 IT/ 数据部门专项工作\\n\\n* 高层的参与度不足\\n\\n* 业务部门缺乏主动性和创新性\\n\\n* 企业缺少战略耐心\\n\\n* **浪费**\\n\\n* 在立项或采购阶段好大求全,导致项目实施周期增加、成本提高、实施复杂度提升,后续利用度低\\n\\n## 误区 3过度依赖技术解决所有问题\\n\\n* **高估技术的影响力,忽略业技融合**\\n\\n+ 忽视企业流程、管理、协作和数据文化上的不足\\n\\n## 误区 4追求短期收益\\n\\n* **市场竞争和业务压力,更关注短期收益和业绩目标的实现**\\n\\n+ 缺乏长远的眼光和战略决心,变革初期的数据质量、交付效率提升只是管中窥豹\\n\\n## 解决思路:急用先行,把握节奏\\n\\n* 考虑自身需求、痛点和技术架构\\n\\n* 综合考量自身与领先企业的差异性\\n\\n* 分阶段、分步骤地推进\\n\\n## 解决思路:定权责、常沟通、重反馈、建流程、勤宣贯\\n\\n* 明确 DataOps 建设目标,定义各部门和个人的责任和角色\\n\\n* 建立定期的沟通反馈机制\\n\\n* 构建规范和流程,减少决策混乱\\n\\n* 培养数据文化,提高员工对 DataOps 的认知和参与度\\n\\n## 解决思路:业务导向,“组织、流程、技术”三位一体共同推进\\n\\n* 围绕业务目标,借助组织变革建立跨部门的团队\\n\\n* 建立标准化的工作流\\n\\n* 选择合适的系统工具\\n\\n## 解决思路:长短结合,久久为功,控制预期,革新认知\\n\\n* 前期拉齐团队和领导层认知\\n\\n* 辅助以可见收益的短期项目,增强信心\\n\\n* 不断加深认知,厘清阶段重点,主动关注行业中的新方向",
"# DataOps 实践初探\\n\\n越来越多的企业开始意识到数据作为核心资产的价值着力于通过 DataOps 改善数据开发流程,提升数据质量,加速数据流动,并促进数据在产品开发和消费端的高效利用。通过工作组的广泛调研,**将头部企业典型的实践与发展趋势**总结如下,希望为行业提供可取的建设思路。\\n\\n## 01 敏捷数据开发取得稳健成效 先行企业特征各异\\n\\n| 头部企业从 2020 年开始 DataOps 实践: | 先行企业的切入模式 |\\n\\n| :------------------------------------ | :------------------ |\\n\\n| - 中国工商银行DataOps 敏捷数据生产与创新体系,研发效率 +50%,测试数据准备效率 +10 倍 | 战略驱动 |\\n\\n| - 浙江移动敏捷数据产品1.7 亿多源异构地址数据的统一建模 | 需求驱动 |\\n\\n| | 技术驱动 |\\n\\n## 03 组织变革促进协同机制构建 业数合作更加紧密\\n\\n### 技术变革与组织变革双向互馈\\n\\n新的挑战和机会\\n\\n高效利用数据资产和新技术的前提条件\\n\\n#### 技术变革\\n\\n#### 组织变革\\n\\n| 业务部门与数据部门结合更为紧密 | 跨职能团队 | 专职组织 | 专职人员 |\\n\\n| :------------------------------- | :--------- | :------- | :------- |\\n\\n| 华为终端:终端业务数据开发与治理联合工作组 | | | |\\n\\n| 浙江移动:跨域数据一致性治理工作小组 | | | |\\n\\n| 中国农业银行DataOps 专职团队 | | | |\\n\\n| 江苏移动:数据质量专员 | | | |\\n\\n## 02 文化渗透促进数据深度应用 数据价值逐步释放\\n\\n- 建立良好的**企业数据文化**是向数据驱动型企业迈进的重要一步。\\n\\n### 培训\\n\\n#### 非数据技术人员\\n\\n#### 数据技术人员\\n\\n加强对**数据生产端的敏捷开发、自动化工具等方法和理念的宣贯**。\\n\\n加强对**数据消费端借助可视化工具进行自查询和数据理念的宣贯**。\\n\\n## 04 数据研发治理流程初步搭建 质量管控初见成效\\n\\n### 数据治理前置初见成效:\\n\\n- 形成“先设计、后开发、先标准、后建模”的模式\\n\\n- 中国工商银行 - 大数据质量门禁大数据代码规范扫描单元测试覆盖UTTD\\n\\n### 数据自动化测试进一步普及:\\n\\n- 某大型互联网 - 自动化测试平台:集成自动化风险标记、自动化测试用例转监控等功能",
"# 业数融合不断深化,逐步由机构高层扩展到全域\\n\\n中国·北京 12.20-12.21 回归数据本质 应用驱动治理\\n\\n2023数据资产管理大会\\n\\n数据应用同业务融合的趋势显著服务对象逐步由机构高层向机构全域转变**普惠化、场景化、智能化**进程加速。\\n\\n### 服务高层\\n\\n* 依托专业的数据分析师、数据科学家\\n\\n* 用于企业高层的战略决策,周期较长\\n\\n* 采用专业化的数据分析工具,工具同业务流程分离\\n\\n#### 主要形式:\\n\\n![业务报表](image_1.png) 业务报表 ![驾驶舱](image_2.png) 驾驶舱\\n\\n### 服务全域\\n\\n* 专业、深度的数据分析同低门槛自助分析结合\\n\\n* 轻量快速的决策中数据分析渗透率在不断提高\\n\\n* 数据分析工具逐步嵌入业务流程中\\n\\n#### 主要形式:\\n\\n![业务报表](image_3.png) 业务报表 ![驾驶舱](image_4.png) 驾驶舱 ![自助式BI](image_5.png) 自助式BI ![移动端看板](image_6.png) 移动端看板 ![AI助手](image_7.png) AI助手\\n\\n![统一数据分析平台](image_8.png)\\n\\n![统一数据分析平台](image_9.png)\\n\\n参考《数据分析应用能力分级要求》标准",
"# DataOps 能力框架——实践保障\\n\\n## 2024DataOPS发展大会\\n\\n智驱新程·数驱万务\\n\\n为了保证 DataOps 研发流水线能够持续高效运转和迭代完善,企业需要有力的保障措施。本指南提出了组织、工具和安全三个维度的保障要求。这些要求的目标是引导企业以全局最优为目标,保障数据研发流水线的平滑运作。\\n\\n### 系统工具\\n\\n#### 数据需求管理\\n\\n| 手段 | 构建数据需求全生命周期的管理能力 |\\n\\n| :--- | :--------------------------------- |\\n\\n| 目标 | 支持流程的设计和共享 |\\n\\n| 进一步要求 | 数据需求方主动通过自助分析平台进行数据探查 |\\n\\n#### 数据研发治理一体化\\n\\n| 原则 | 先设计、后开发、先标准、后建模 |\\n\\n| :--- | :------------------------------- |\\n\\n| 手段 | 设计管理、开发管理、数据应用 |\\n\\n| 目的 | 规范即设计,设计即开发,开发即治理 |\\n\\n#### 数据自动化交付部署\\n\\n![数据自动化交付部署流程图](image_1.png)\\n\\n#### 数据一体化运维\\n\\n| 对象 | 数据研发全链路的监测、运维监控、运维告警、运维操作 |\\n\\n| :--- | :---------------------------------------------------- |\\n\\n| 手段 | 可视化方式 |\\n\\n| 目的 | 实时展现研发效能、数据质量 |\\n\\n### 组织管理\\n\\n#### 组织架构\\n\\n合理配置\\n\\n{ | 数据技术架构 |\\n\\n| 数据人员架构 |\\n\\n#### 岗位角色\\n\\n| | 设置相应的岗位角色 |\\n\\n| :--- | :------------------ |\\n\\n| | 明确晋升路线与考核方式 |\\n\\n#### 协作协同\\n\\n依托\\n\\n| 敏捷方法 |\\n\\n| :-------- |\\n\\n| 关注团队、工具间的协同问题持续进行优化 |\\n\\n解决\\n\\n### 安全管控\\n\\n#### 安全风险策略\\n\\n加强\\n\\n{ | 数据研发全生命周期 |\\n\\n| 风险识别 |\\n\\n| 风险预测 |\\n\\n#### 风险管理\\n\\n外部法律法规\\n\\n+ 监管要求\\n\\n+ 企业内部安全需求\\n\\n健全\\n\\n风险管理策略\\n\\n#### 安全测试\\n\\n数据研发过程的各环节进行安全测试\\n\\n保证\\n\\n提前发现问题处理问题"
],
"passage_sources": [
"原始查询-event-f81ab568ce6cfce72175a1087db911f899752c622460211efdc350d6c3167149",
"原始查询-event-774a6133f9a25821d10ebab0d1745ac30d14a4016da4d3548b102f265e633a22",
"原始查询-event-5be46591a0a7ccd7266c2f0961280fd5df89d16e316f123585ebe001f09c5fe1",
"原始查询-event-cdc6337c8984c01a1379d9afa19eeb4ba81660be38053a846e0f250baf04ee62",
"原始查询-event-f8d46e99bb67396a63859ea3eafb0dd619b62f57c9337d2e223051e0d4f9a200",
"原始查询-text-da7aaabf868de83a9fc286404d784e30982b7ba7a5e56c5c1707922e5e39dcf1",
"原始查询-text-9c60e1d67a9be847f2b2e95f859a18bf9940b7854a020b276d921f9caa0bc7a6",
"原始查询-text-4e3dfec2ed3a3eaee6d31861e83cd54d8ba47840cd36f43162c719fabe2ef048",
"子查询1-text-bfb55ff2c7c3ab9d1839b1a9b5e75e706bdb2f0ebab747e9dc22168e15da5b9c",
"子查询2-text-21cecc0bf37f351e693eaf71192ada4887caa03f90c22fe314b582966d6ccc79"
],
"pagerank_data_available": true,
"pagerank_summary": {},
"concept_exploration_results": {},
"exploration_round": 0,
"debug_info": {
"total_time": 22.682480573654175,
"retrieval_calls": 1,
"llm_calls": 4,
"langsmith_project": "rag-api-service",
"token_usage_summary": {
"has_llm": true,
"has_generator": true,
"last_call": {
"prompt_tokens": 2946,
"completion_tokens": 422,
"total_tokens": 3368
},
"total_usage": {
"prompt_tokens": 6975,
"completion_tokens": 690,
"total_tokens": 7665,
"call_count": 4
},
"model_name": "qwen2-7b-instruct",
"has_last_usage": true,
"has_total_usage": true
},
"complexity_analysis": {
"is_complex": true,
"complexity_level": "complex",
"confidence": 0.95,
"reason": "这是一个复杂查询,因为用户询问的是数据研发运营一体化(DataOps)与数据开发的特定范式之间的关系。这可能涉及到对DataOps实践的理解、数据开发的不同范式以及两者之间的联系的深入分析。这种类型的问题通常需要从多个角度和来源收集信息并可能涉及一些推理来确定准确的答案。因此可能需要生成多个子查询来全面解答。"
},
"debug_mode_analysis": {
"debug_mode": "0",
"debug_override": {},
"path_override_applied": false
},
"sufficiency_analysis": {
"final_sufficiency": true,
"sufficiency_check_details": {
"is_sufficient": true,
"confidence": 0.9,
"reason": "事件信息和段落信息包含了回答查询所需的关键内容其中事件信息明确指出数据研发运营一体化DataOps是数据开发的新范式将敏捷、精益等理念融入数据开发过程打破协作壁垒构建集开发、治理、运营于一体的自动化数据流水线。段落信息进一步解释了DataOps的概念、实践误区以及解决思路从而完整地回答了用户关于DataOps是数据开发哪种范式的问题。",
"iteration": 0
},
"iteration_sufficiency_history": [],
"sufficiency_progression": {
"status": "no_sufficiency_checks"
}
},
"routing_analysis": {
"total_routing_decisions": 1,
"sub_query_generation_count": 0,
"parallel_retrieval_count": 0,
"pagerank_collection_count": 0
},
"concept_exploration_analysis": {
"exploration_enabled": false,
"exploration_rounds": 0,
"pagerank_nodes_analyzed": 0,
"successful_branches_total": 0,
"total_branches_attempted": 0
}
},
"iteration_history": [
{
"iteration": 0,
"query": "并行检索: 原始查询 + 2 个子查询",
"passages_count": 10,
"action": "retrieval"
},
{
"iteration": 0,
"action": "sufficiency_check",
"is_sufficient": true,
"confidence": 0.9,
"sub_queries_count": 0
},
{
"iteration": 0,
"action": "final_answer_generation",
"answer_length": 815
}
]
}